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Abstract: We offer a spectral analysis for a class of transfer operators. These transfer operators arise for a wide
range of stochastic processes, ranging from random walks on infinite graphs to the processes that govern
signals and recursive wavelet algorithms; even spectral theory for fractal measures. In each case, there
is an associated class of harmonic functions which we study. And in addition, we study three questions in
depth:
In specific applications, and for a specific stochastic process, how do we realize the transfer operator T as
an operator in a suitable Hilbert space? And how to spectral analyze T once the right Hilbert space H has
been selected? Finally we characterize the stochastic processes that are governed by a single transfer
operator.
In our applications, the particular stochastic process will live on an infinite path-space which is realized in
turn on a state space S. In the case of random walk on graphs G, S will be the set of vertices of G. The
Hilbert space H on which the transfer operator T acts will then be an L2 space on S, or a Hilbert space
defined from an energy-quadratic form.
This circle of problems is both interesting and non-trivial as it turns out that T may often be an unbounded
linear operator in H; but even if it is bounded, it is a non-normal operator, so its spectral theory is not
amenable to an analysis with the use of von Neumann’s spectral theorem. While we offer a number of
applications, we believe that our spectral analysis will have intrinsic interest for the theory of operators in
Hilbert space.
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1. Introduction

In this paper, we consider infinite configurations of vectors(fk )k∈Z in a Hilbert space H. Since our Hilbert spaces Hare typically infinite-dimensional, this can be quite com-plicated, and it will be difficult to make sense of finite andinfinite linear combinations ∑k∈Z ck fk .In case the system (fk ) is orthogonal, the problem is easy,
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but non-orthogonality serves as an encoding of statisticalcorrelations, which in turn motivates our study. In ap-plications, a particular system of vectors fk may often beanalyzed with the use of a single unitary operator U in
H. This happens if there is a fixed vector φ ∈ H suchthat fk = Ukφ for all k ∈ Z. When this is possible, thespectral theorem will then apply to this unitary operator.A key idea in our paper is to identify a spectral densityfunction and a transfer operator, both computed directlyfrom the pair (φ,U).We show that the study of linear expressions ∑k ck fk maybe done with the aid of the spectral function for a pair(φ,U). A spectral function for a unitary operator U isreally a system of functions (pφ), one for each cyclic sub-space H(φ). In each cyclic subspace, the function pφ isa complete unitary invariant for U restricted to H(φ): bythis we mean that the function pφ encodes all the spec-tral data coming from the vectors fk = Ukφ, k ∈ Z. Forbackground literature on spectral function and their ap-plications we refer to [1, 10, 16, 19–21].In summary, the spectral representation theorem is the as-sertion that commuting unitary operators in Hilbert spacemay be represented as multiplication operators in an L2-Hilbert space. The understanding is that this represen-tation is defined as a unitary equivalence, and that the
L2-Hilbert space to be used allows arbitrary measures,and L2 will be a Hilbert space of vector valued functions,see e.g., [6]. Because of applications, our systems of vec-tors will be indexed by an arbitrary discrete set ratherthan merely integers Z.We will attack this problem via an isometric embedding of
H into an L2-space built on infinite paths in such a waythat the vectors fk in H transform into a system of randomvariables Zk . Specifically, via certain encodings we builda path-space Ω for the particular problem at hand as wellas a path space measure P defined on a σ-algebra ofsubsets of Ω.If H consists of a space of functions f on a state space S,we will need the covariance numbers

E((f1 ◦ Zn) · (f2 ◦ Zm)) ≡ ∫Ω f1(Zn(γ))f2(Zm(γ))dP(γ),
where Zn : Ω → S, i.e., where the stochastic process is
S-valued. The set S is called the state space.The paper is organized as follows. In Sec. 2, for later use,we present our path-space approach, and we discuss thepath-space measures that we will use in computing tran-sitions for stochastic processes. We prove two theoremsmaking the connection between our path-space measureson the one hand, and the operator theory on the other.Several preliminary results are established proving how

the transfer operator governs the process and its applica-tions.The applications we give in Sec. 3 and 4 are related. Infact, we unify these applications with the use of an en-coding map which is also studied in detail. It is appliedto transitions on certain infinite graphs, to dynamics of(non-invertible) endomorphisms (measures on solenoids),to digital filters and their use in wavelets and signals, andto harmonic analysis on fractals.The remaining sections deal primarily with applicationsto a sample of concrete cases.
2. Stochastic processes
A key tool in our analysis is the construction of path-space measures on infinite paths, primarily in the case ofdiscrete paths, but the fundamental ideas are the samein the continuous case. Both viewpoints are used in [12].Readers who wish to review the ideas behind there con-structions (stochastic processes and consistent families ofmeasures) are referred to [7–9] and [18].Let (Ω, F,P) be a Borel probablity space, Ω compactHausdorff space. (Expectation E(·) = ∫Ω ·dP.)Let (Zk )k≥0 be a stochastic process, and

Fn = σ-alg.{Zk |k ≤ n}, (1)
the corresponding filtration. Let An ≡ the subspace in
L2(Ω,P) generated by Fn. Let Pn be the orthogonal pro-jection of L2(Ω,P) onto An; then the conditional expecta-tions E(·|Fn) is simply = Pn.We say that (Zk )k≥0 has the generalized Markov propertyif and only if there exists a state space S (also a compactBorel space):

Zk : Ω→ S,

such that for all bounded functions f on S, for all n ∈ N≥0,
E(f|Fn) = E(f|Zn).To make precise the operator theoretic tools going into ourconstruction, we must first introduce the ambient Hilbertspaces. We are restricting here to L2 processes, so thecorresponding stochastic integrals will take values in anambient L2-space of random variables: For our analysis,we must therefore specify a fixed probability space, with
σ-algebra and probability measure.We will have occasion to vary this initial probability space,depending on the particular transition operator that gov-erns the process.In the most familiar case of Brownian motion, or randomwalk, the probability space amounts to a somewhat stan-dard construction of Wiener and Kolmogorov, but here with
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some modification for our problem at hand: The essentialaxiom in Wiener’s case is that all finite samples are jointlyGaussian, but we will drop this restriction and considergeneral stochastic processes, and so we will not make re-stricting assumptions on the sample distributions and onthe underlying probability space. For more details, andconcrete applications, regarding this stochastic approachand its applications, see Sec. 2 and 4 below.We begin here with a particular case of a process takingvalues in the set of vertices in a fixed infinite graph G: [13]
2.1. Starting assumptions and constructions
(a) G = (G0, G1) a graph, G0 = the set of vertices, G1 =the set of edges.
(b) (S, BS , µ) a probability space.
(c) The transition matrix is the function

p(x, y) ≡ P({γ ∈ Ω|Zn(γ) = x, Zn+1(γ) = y})
defined for all (x, y) ∈ G1, and we assume that it isindependent of n.

(d) From (a) and (b), we construct the path space
Ω ≡ {γ = (x0x1x2 · · · )|(xi−1xi) ∈ G1, ∀i ∈ N},

and the path-measure P = Pµ . The cylinder setsgiven by the following data: For Ei ∈ BS , xi ⊂ S, set
P(C (E1, · · · , En)) ≡ ∫

E0
∫
E1 · · ·

∫
En
p(x0, x1)p(x1, x2)

· · · p(xn−1, xn)dµ(x0)dµ(x1) · · · dµ(xn).
(e) Starting with (Ω, F,P), if G ⊂ F is a subsigma alge-bra, let E(·|G) be the conditional expectation, condi-tioned by G.If (Xi) is a family of random variables, and G is the σ-algebra generated by (Xi) we write E(·|(Xi)) in placeof E(·|G).
(f ) Let (Ω, F,P, (Zn)) be as above. We say that (Zn) is

Markov if and only if
E(f ◦ Zn+1|{Z0, · · · Zn}) = E(f ◦ Zn+1|Zn)for all n ∈ N0.

(g) From (b) and (d) we define the transfer operator Tby (Tf)(x) = ∫
S
p(x, y)f(y)dµ(y) (2)

for measurable functions f on S. If 11 denote the con-stant function 1 on S, then T 11 = 11.
(h) Let (S, BS , µ) and T be as in (g), see(2). A measure

µ0 on S is said to be a Perron-Frobenius measure ifand only if
∫
S
(Tf)(x)dµ0(x) = ∫

S
f(x)dµ0(x),

abbreviated µ0 ◦ T = µ0. (3)
(i) Let (Ω, F,P) be as above, and let T be the transferoperator. If µ0 is a Perron-Frobenius measure, let

P(µ0) be the measure on Ω determined by using µ0 asthe first factor, i.e.,
P(µ0)(C (E1, · · · , En)) = ∫

E0
∫
E1 · · ·

∫
En
p(x0, x1)p(x1, x2)

· · · p(xn−1, xn)dµ0(x0)dµ(x1) · · · dµ(xn)
= ∫

E0 Px0 (C (E1, · · · , En))dµ(x0).
In many cases, it is possible to choose specific Perron-Frobenius measures µ0, i.e., measures µ0 satisfying

µ0(S) = 1 and ∫
S
(Tf)(x)dµ0(x) = ∫

S
f(x)dµ0(x).

(Note the normalization!)
Theorem 2.1.
(D. Ruelle) [2] Suppose there is a norm ‖ · ‖ on bounded
measurable functions f on S such that the ‖·‖-completion
L(S) is embedded in L∞(S), and that there are constants
α ∈ (0, 1), M ∈ R+ such that

‖T f‖ ≤ α‖f‖+M‖f‖∞,

where ‖ · ‖∞ is the essential supremum-norm. Then T has
a Perron-Frobenius measure.

Theorem 2.2.
Let (S, µ) be a probability space with S carrying a sep-
arate σ-algebra BS and µ defined on BS . Let Ω be the
path space, and suppose the transfer operator T has a
Perron-Frobenius measure µ0, then

E(µ0)((φ ◦ Zn)(ψ ◦ Zn+1)) = 〈φ, Tψ〉L2(µ0) (4)
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for all φ, ψ ∈ L2(µ), and all n ∈ N0. Here E(F ) ≡∫Ω F (ω)dP(ω) for all integrable random variables F : Ω→
C; E for expectation.

Proof.

E(µ0)((φ ◦ Zn)(ψ ◦ Zn+1)) = ∫
S

∫
S
· · ·
∫
S
p(x0, x1) · · · p(xn−1, xn)p(xn, xn+1)φ(xn)ψ(xn+1)dµ0(x0)dµ(x1) · · · dµ(xn+1)

= ∫
S

∫
S
· · ·
∫
S
p(x0, x1) · · · p(xn−1, xn)φ(xn)(Tψ)(xn)dµ0(x0)dµ(x1) · · · dµ(xn)

= ∫
S
T n(φ · (Tψ))(x0)dµ0(x0)

= ∫
S
φ(x)(Tψ)(x)dµ0(x) by Perron-Frobenius

= 〈φ, Tψ〉L2(µ0).

It is not necessary in (4) to restrict attention to functions φ, ψ in L2(µ0). The important thing is that the integral∫
S φ(x)(Tψ)(x)dµ0(x) exists, and this quantity may then be used instead on the RHS in (4).Let (Zn)n∈N0 be a stochastic process, and let Fn be the σ-algebra generated by {Zk | 0 ≤ k ≤ n}. Futhermore, let E(·|Fn)be the conditioned expectation conditioned by Fn.

Theorem 2.3.
Let (Zn)n∈N0 be a stochastic process with stationary transitions and operator T . Then

E(f ◦ Zn+1|Fn) = (Tf) ◦ Zn (5)
for all bounded measurable functions f on S, and all n ∈ N0.
Proof. We may assume that f is a real valued function on S. Let An ≡ all bounded Fn-measurable functions. Thenthe assertion in (5) may be restated as: ∫

Ω φ(f ◦ Zn+1)dP = ∫Ω φ((Tf) ◦ Zn)dP (6)
for all φ ∈ An.If φ ∈ An, φ(·) = Φ(x0, x1, · · · xn); and then the LHS in (6) may be written as∫

S

∫
S
· · ·
∫
S
p(x0, x1) · · · p(xn, xn+1)Φ(x0, x1 · · · xn)f(xn+1)dµ0(x0)dµ(x1) · · · dµ(xn+1)

= ∫
S

∫
S
· · ·
∫
S
p(x0, x1) · · · p(xn−1, xn)Φ(x0, x1 · · · xn)(Tf)(xn)dµ0(x0)dµ(x1) · · · dµ(xn)

= ∫Ω φ · (Tf) ◦ Zn dP.

Hence (5) follows.
Corollary 2.1.
Let (Ω, F,P, (Zn)) be as in the theorem. Then the process (Zn) is Markov.
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Proof. We must show that
E(f ◦ Zn+1|Fn) = E(f ◦ Zn+1|Zn).

By the theorem, we only need to show that
E(f ◦ Zn+1|Zn) = (Tf) ◦ Zn.

In checking this we use the transition operator T . As a result we may now assume that φ has the form φ = g ◦ Zn for ga measurable function on S. Hence∫
Ω φ(f ◦ Zn+1)dP = ∫Ω(g ◦ Zn)(f ◦ Zn+1)dP = 〈g, T f〉L2(µ)

= ∫
S
g(Tf)dµ = ∫Ω(g ◦ Zn)((Tf) ◦ Zn)dP

= ∫Ω φ((Tf) ◦ Zn)dP,

which is the desired conclusion.
Definition 2.1.We say that a measurable function f on S is harmonic if
Tf = f .
Definition 2.2.A sequence of random variables (Fn) is said to be a mar-tingale if and only if E(Fn+1|Fn) = Fn for all n ∈ N0.
Corollary 2.2.
Let (Zn)n∈N0 be a stochastic process with stationary tran-
sitions and operator T . Let f be a measurable function on
S.
Then f is harmonic if and only if (f ◦ Zn)n∈N0 is a martin-
gale.

Proof. This follows from (5) combined with Defini-tion 2.2.
Corollary 2.3.
Suppose a process (Zn)n∈N0 is stationary with a fixed tran-
sition operator T : L2(µ) → L2(µ). Then µ = P ◦ Z−1

n for
all n ∈ N0.

Proof. Let f and g be a pair of functions on S as spec-ified above. Then we showed that
∫
S
gfdµ = ∫Ω(g ◦ Zn)(f ◦ Zn)dP,

which is the desired conclusion.

2.2. Martingales and boundaries
Let G = (G0, G1) be an infinite graph with a fixed conduc-tance c, and let the corresponding operators be ∆c and
Tc .Let h : G0 → R is a harmonic function, i.e., ∆ch = 0, orequivalently Tch = h.As an application of Corollary 2.2, we may then apply atheorem of J. Doob to the associated martingale h ◦ Zn,
n ∈ N0. This means that the sequence (h ◦ Zn) will thenhave P- a. e. limit i.e.,

lim
n→∞

h ◦ Zn = v pointwise P a.e. (7)
The limit function v : Ω → R will satisfy v(x0x1x2 · · · ) =
v(x1x2x3 · · · ), or equivalently,

v = v ◦ σ. (8)
The existence of the limit in (7) holds if one or the otherof the two conditions is satisfied:(i) h ∈ L∞; or
(ii) supn ∫Ω |h ◦ Zn|2dP < ∞.

Proposition 2.1.
[11] If h : G0 → R is harmonic and if (i) or (ii) hold, then

h(x) = ∫Ω v dPx for all x ∈ G0, (9)
where Px = the measure P conditioned with Z0(γ) = x.
The converse implication holds as well.
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Proof. Starting with h harmonic, if the Doob-limit vin (7) exists, then it is clear that v satisfies (8). By Dom-inated Convergence, (9) will be satisfied.Conversely, suppose some measurable v : Ω→ R satisfies(8), and the integral in (9) exists then
(Tch)(x) =∑

y∼x
p(x, y)h(y)

=∑
y∼x

P(Z0 = x, Z1 = y)E(v|Z0(·) = y)
=by (8)
∑
y∼x

p(x, y)Ex (v|Z1(·) = y)
=∑

y∼x
p(x, y)E(v|Z0 = x, Z1 = y)

= Px (v(· · · ))= h(x),
showing that h is harmonic.
2.3. Solenoids
Example 2.1.Let S be a compact Hausdorff space, and σ : S → Sa finite-to-one endomorphism onto S. Let Xσ (S) be thecorresponding solenoid:
Xσ (S) ⊂ ∏

n∈N0
S, where N0 = {0} ∪ N = {0, 1, 2, 3, · · · },
Xσ (S) = {(xk )k∈N0 |σ (xk+1) = xk}. (10)

One advantage of a choice of solenoid over the initial en-domorphism σ : S → S is that σ induces an automorphism
σ̂ : Xσ (S)→ Xσ (S) as follows:

σ̂ ((x0x1x2 · · · )) = (σ (x0)x0x1x2 · · · ),
with inverse

σ̂−1((x0x1x2 · · · )) = (x1x2x3 · · · ).
Let W : S → [0, 1] be a Borel measurable function, andset

(TW f)(x) = ∑
y

σ (y)=x
W (y)f(y), f ∈ B(S), x ∈ S. (11)

Assume ∑
σ (y)=xW (y) ≡ 1, ∀x ∈ S. (12)

For points x ∈ S, set D(x) ≡ ]{y|σ (y) = x}. A measure
µ on S is said to be strongly invariant if∫

S

1
D(x) ∑y

σ (y)=x
f(y)dµ(x) = ∫

S
f(x)dµ(x).

Lemma 2.1.
Assume a measure µ on S is strongly invariant, and let
m be a function on S. Set V f(x) = m(x)f(σ (x)). Then the
adjoint operator

V ∗ : L2(µ)→ L2(µ) is (V ∗f)(x) = 1
D(x) ∑y

σ (y)=x
m(y)f(y).

Proof. See [11].
Set Ω ≡ Xσ (S) and equip it with the σ-algebra F and thetopology which is generated by the cylinder sets.Set Zk : Ω→ S,

Zk (x0x1x2 · · · ) ≡ xk , k ∈ N0. (13)
Let E ⊂ S be a Borel set, and consider

Z−1
k (E) = {ω ∈ Ω|Zk (ω) ∈ E}. (14)

Then the σ-algebra F on Ω is generated by the sets
Z−1
k (E) as k and E vary. (15)

Set
Fn ≡ σ-algebra� Zk |k ≤ n �, (16)where � · � refers to the σ-algebra as specified in (14).In Ω = Xσ (S), consider the following random walk: Forpoints x, y ∈ S, a transition x → y is possible if and onlyif σ (y) = x; and in this case the transition probability is

pW (x, y) ≡ W (y).Let µ be a probability measure on S. In Ω we introducethe following Kolmogorov measure P ≡ PW which is de-termined on cylinder sets as follows
P(Cn) ≡ P(C (E0, E1, E2 · · · , En)) = ∫

E0
∫
E1

· · ·
∫
En
W (x1)W (x2) · · ·W (xn)dµ(x0)dµ(x1) · · · dµ(xn).(17)

More specifically, P is a measure on infinite paths, and
Cn = {ω = (ω0ω1ω2 · · · )|σ (ωi+1) = ωi,

Zk (ω) ∈ Ek , for 0 ≤ k ≤ n} . (18)
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Example 2.2.The following is a solenoid which is used in both num-ber theory (the study of algebraic irrational numbers)and in ergodic systems. [4]. For this family of exam-ples, the solenoids are associated with specific polyno-mials p ∈ Z[x].Let S ≡ Ts where s ∈ N is fixed; and let p(x) = a0xs +
a1xs−1 + · · ·+ as; a0 6= 0, be a polynomial, p ∈ Z[x]. Set

F = Fp ≡



0 a0 0 0 · · · 00 0 a0 0 · · · 00 0 0 a0 · · · 0... ... ... ... . . . ...0 0 0 0 · · · a0
−as −as−1 · · · · · · −a2 −a1

 .

Consider the shift σ on the infinite torus ∏Z Ts = (Ts)Z,and set
Xσ ≡ {(zn)n∈Z ∈ (Ts)Z|a0zn+1 = Fzn}.

Then it follows that Xσ (p) is σ-invariant and closed. As aresult, Xσ (p) is a compact solenoid.
3. Graphs
One additional application of these ideas is to infinitegraph systems (G, c) where G is a graph and c is a positiveconductance function. A comprehensive study of this classof examples was carried out in the paper [12]. We willadapt the convention from that paper:
G0 : the set of vertices in G;
G1 : the set of edges in G;
and c : G1 → R+ the conductance function.

Assumptions(i) Edge symmetry. If x, y ∈ G0 and (x, y) ∈ G1, thenwe assume that cx,y = cy,x . Moreover, (x, y) ∈ G1 ⇔(y, x) ∈ G1.
(ii) Finite neighborhoods. For all x ∈ G0, the set

Nbh(x) = {y ∈ G0|(x, y) ∈ G1} is finite.
(iii) No self-loops. If x ∈ G0, then x /∈ Nbh(x).Convention: If x, y ∈ G0, we write x ∼ y iff (x, y) ∈

G1.
(iv) Connectedness. For all x, y ∈ G0 there exists

{xi}ni=0 ⊂ G0 such that (xi, xi+1) ∈ G1, i =0, 1, · · · , n − 1 x0 = x and xn = y.

(v) Choice of origin. We select an origin o ∈ G0.
Definition 3.1. • The Laplace operator ∆ = ∆c:

(∆f)(x) ≡∑
y∼x

cx,y(f(x)− f(y)).
• Hilbert spaces:

(i) l2(G0): functions f : G0 → C such that
‖f‖22 = ∑

x∈G0 |f(x)|2 < ∞. Set 〈f1, f2〉2 ≡∑
x∈G0 f1(x)f2(x). For every x ∈ G0, set

δx : G0 → R,
δx (y) = {1 if y = x,0 if y 6= x.

Note that {δx} is an orthonormal basis (ONB)in l2(G0).(ii) HE : finite energy functions module constants:
‖f‖2E = 12 ∑all

∑
x∼y

cx,y|f(x)− f(y)|2. (19)
Set

〈f1, f2〉E ≡ 12 ∑∑
x∼y

cx,y(f1(x)
− f1(y))(f2(x)− f2(y)). (20)

• Dipoles. For all x ∈ G0 there is a unique vx ∈ HEsuch that
〈vx , f〉E = f(x)− f(o), ∀f ∈ HE .

In this case, vx satisfies ∆vx = δx−δo, and we makethe choice vx (o) = 0. The function vx : G0 → R iscalled a dipole.
Example 3.1.
The dyadic tree.

• A = the alphabet of two letters, bits {0, 1} ' Z2.• G0: the set of all finite words in A : o = ∅ = theempty word, x = (a1a2 · · · an) ∈ G0, ai ∈ A, aword of length n; l(x) = n.
• G1 ≡ the edges in the dyadic tree. If x =
∅, Nbh(x) = {0, 1} two one-letter words. If
l(x) = n > 0, x = (a1a2 · · · an), Nbh(x) =
{(a1 · · · an−1), (x0), (x1)}. Set x∗ ≡ (a1 · · · an−1).

346

Author c
opy



Palle E. T. Jorgensen, Myung-Sin Song

• Constant conductance.This is the restriction c ≡ 1 on G1. Then
(∆f)(o) = 2f(o)− f(0)− f(1), and

(∆f)(x) = 3f(x)− f(x∗)− f(x0)− f(x1),
if x ∈ G0, and l(x) > 0.

• Paths in the tree. If x = (a1a2 · · · an) ∈ G0, thereis a unique path γ(x) from ∅ to x: the path is
γ(x) = {(o, a1), (a1, (a1a2)), · · · ((a1 · · · an−1), x)}

and consists of n edges.
• Concatenation of words: For x = (a1a2 · · · an),
y = (b1b2 · · · bm) ∈ G0. Set z = z(xy) =(a1 · · · anb1 · · · bm).

The dipoles (vx ) are indexed by x ∈ G0 \ (o), and vx (o) = 0where o is the chosen origin. If G = the tree, then o = ∅ =the empty word.
Lemma 3.1.
[12] Let x = (a1a2 · · · an), ai ∈ A, n = l(x); and y =(b1b2 · · · bm), bi ∈ A, m = l(y). Then

(i)

vx (y) ≡


0 if y = o,2n−m · (2m − 1)− 2n−12 if m ≤ n,2n−12 if m > n.

(ii) vx ∈ HE , and ‖vx‖2E = 23 (22n − 1).
(iii) 〈vx , vy〉E = 23 (22 min(l(x)l(y)) − 1) = #(γ(x) ∩ γ(y)), for

all x, y ∈ G0 \ (o).
Proof. (i) By the uniqueness in Lemma 3.1, it isenough to prove that the function vx in (i) satisfies

〈vx , f〉E = f(x) − f(o) for all f ∈ HE , and thereforealso ∆vx = δx − δo; (21)
and that (ii)-(iii) hold.Specifically, we must prove that

(∆vx )(o) = −1,(∆vx )(x) = 1, and(∆vx )(y) = 0, if y /∈ {o, x}.

Each is a computation:
(∆vx )(o) = 2vx (o)− vx (0)− vx (1)= 0− (2 · 2n−1 − (2n − 1))= 1= δo(o).

And if y 6= o, but m < n, then
(∆vx )(y) =3vx (y)− vx (y∗)− vx (y0)− vx (y1)=3 · 2n−m · (2m − 1)− 2n−m+1 · (2m−1 − 1)

− 2 · 2n−m−1 · (2m+1 − 1)=0.
Finally, we compute the case y = x as follows:

(∆vx )(x) =3vx (x)− vx (x∗)− vx (x0)− vx (x1)=3 · (2n − 1)− 2 · (2n−1 − 1)− 2 · (2n − 1)=0− 3 + 2 + 2 = 1=δx (x)− δo(x).
We leave the case m = l(y) > n to the reader.

(ii) A computation using (19) yields
‖vx‖2E = 12 ∑m≤n(2n−m)2

= 12 · 22n ·
(1− 2−2n1− 2−2

)
= 23 (22n − 1)

proving (ii).
(iii) Suppose m = l(y) < n = l(x), x, y ∈ G0 \ (o).From (20), we see that the contribution to 〈vx , vy〉Eonly includes words z with l(z) ≤ m.The desired conclusion

〈vx , vy〉E = 2−2m#(γ(x) ∩ γ(y))
follows as in (ii). The possibilities may be illustrated inFig. 1 below.
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Figure 1. Dyadic tree-branching rules.

4. Specific transition operators
4.1. Transition on graphs
Let G = (G0, G1) be a graph with conductance function
c : G1 → R+, and transition probabilities

p(x, y) ≡ c(x, y)
c(x) , ∀(x, y) ∈ G1.

Note that c(x)p(x, y) = p(x, y)c(y), which makes the cor-

responding p-random walk reversible.
Lemma 4.1.
Assume that #Nbh(x) < ∞ for all x ∈ G0. Set

(Tf)(x) ≡∑
y∼x

p(x, y)f(y),
and let (Zn) be the random walk on G0 with transition
probabilities p(x, y) on edges (xy) in G, i.e.,

P({γ|Zn(γ) = x, Zn+1(γ) = y}) = p(x, y) for (xy) ∈ G1

Let T be the transition operator, and for φ ∈ l1(G0), set

〈φ〉 ≡
∑
x∈G0 φ(x),

then for pairs of functions f1 and f2 on G0, we have

E((f1 ◦ Zn) · (f2 ◦ Zn+1)) = 〈T n(f1 · T f2)〉
with f1 and f2 are restricted to make the last sum conver-
gent.

Proof. Let f1, f2 be a pair of functions (real valued) on G0 such that the pointwise product f1 · (Tf2) is in l1(G0). Thenfor n ∈ N0, we now compute the Zn-expectations: For the P-integration on path space Ω, we have:
E((f1 ◦ Zn) · (f2 ◦ Zn+1)) = ∫Ω(f1 ◦ Zn) · (f2 ◦ Zn+1)dP

=∑
x0
∑
x1
· · ·
∑
xn+1such that xi−1∼xi

p(x0, x1)p(x1, x2) · · · p(xn, xn+1)f1(xn)f2(xn+1)
=∑

x0
∑
x1
· · ·
∑
xn

p(x0, x1)p(x1, x2) · · · p(xn−1, xn)f1(xn)(Tf2)(xn)
= ∑

x0∈G0 T
n(f1 · T f2)(x0)

= 〈T n(f1 · T f2)〉.

Theorem 4.1.
Let (G, c) be a graph with conductance c : G1 → R+. Assume that ]Nbh(x) < ∞ for all x ∈ G0, when Nbh(x) ≡ {y ∈
G0|y ∼ x}. Set

p(x, y) ≡ c(x, y)
c(x) and (Tf)(x) ≡∑

y∼x
p(x, y)f(y).
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Set
l1(G0, µc) = {f : G0 → R|x → c(x)f(x) ∈ l1(G0)}, and 〈f〉c ≡

∑
x∈G0 c(x)f(x).

Let P(c) = P(µc ) be the cylinder path-measure on

Ω ≡ {(x0x1x2 · · · )|xi ∈ G0, xi−1 ∼ xi, i ∈ N},

where we use µc in the first variable x0, and counting measure on the remaining variables. Then

E(µc )((f1 ◦ Zn) · (f2 ◦ Zn+1)) = 〈f1 · T f2〉c.
Proof.

E(µc )((f1 ◦ Zn) · (f2 ◦ Zn+1)) =∑
x0
∑
x1
· · ·
∑
xn+1such that xi−1∼xi

c(x0)p(x0, x1)p(x1, x2) · · · p(xn, xn+1)f1(xn)f2(xn+1)
=∑

x0
∑
x1
· · ·
∑
xn

c(x0)p(x0, x1)p(x1, x2) · · · p(xn−1, xn)f1(xn)(Tf2)(xn)
=∑

x0
c(x0)T n(f1 · T f2)(x0)

= 〈T n(f1 · T f2)〉c= 〈f1 · T f2〉c.
In the multiple summations ∑x0

∑
x1 ·
∑

xn+1 , it is just the first ∑x0-summation that is possibly infinite; in case thevertex-set G0 is infinite. Note that the combined summations in the beginning of the proof contribute the integrationover the set Ω of all infinite paths γ = (x0x1x2 · · · ) specified by x0 ∼ x1, x1 ∼ x2, x2 ∼ x3, · · · , at each step, moving from
xi to the next variable, note that xi+1 ranges over the finite set Nbh(xi). For more details on this point, see (22), below.In the last step, we used the following formula which is valid on l1(µc):

〈Tφ〉c = 〈φ〉c, φ ∈ l1(µc). (22)
We prove (22):

〈Tφ〉c = ∑
x∈G0 c(x)

∑
y∼x

p(x, y)φ(y) = ∑
y∈G0 φ(y)∑

x∼y
c(x, y) = ∑

y∈G0 φ(y)c(y) = 〈φ〉c.

4.2. Transfer operators
In Sec. 2, we showed that a stochastic process (Zn)n∈N0 ona probability space (Ω, F,P) induces a transfer operator
T . The derivation of T is then essentially canonical.Here, the strategy will be reversed; but now, starting with
T , there is a variety of choices of associated processes(Zn)n∈N0 .
4.2.1. SettingLet S be a compact Hausdorff space. Let (S, B )S , µ) be aBorel probability measure space, and let p : S×S → R≥0

be a continuous function such that
∫
S
p(x, y)dµ(y) ≡ 1 µ a.e. x. (23)

Set
(Tf)(x) ≡ ∫

S
p(x, y)dµ(y) for all f ∈ L∞(S). (24)
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Set
Ω ≡ Ωp = {γ = (x0x1x2 · · · )|xi ∈ S,s.t. p(xi−1, xi) > 0}, (25)

so an infinite path-space with path transitions governedby te function p.Let P = (Pp) be the associated cylinder measure on Ωp asdefined in Sec. 2. For n ∈ N0 and γ = (x0x1x2 · · · ) ∈ Ωp,set
Zn(γ) ≡ xn; i.e., Zn : Ωp → S (26)

is an S valued random variable for all n ∈ N0.
Theorem 4.2.
Let p : S × S → R≥0 be as stated in (23) above. Let T
be the transfer operator (24). Then the stochastic process(Zn)n∈N0 in (26) satisfies

E(p)((f1 ◦ Zn) · (f2 ◦ Zn+1)) = ∫
S
(T n(f1 · T f2))(x)dµ(x)

for all f1, f2 ∈ L∞(S). (27)

Proof. The details in the computation for (27) follow those in Sec. 2, but the reasoning is now reversed. Indeed,
E(p)((f1 ◦ Zn) · (f2 ◦ Zn+1)) = ∫

S

∫
S
· · ·
∫
S
p(x0, x1) · · · p(xn, xn+1)f1(xn)f2(xn+1)dµ(x0)dµ(x1) · · · dµ(xn+1)

= ∫
S

∫
S
· · ·
∫
S
p(x0, x1) · · · p(xn−1, xn)f1(xn)(Tf2)(xn)dµ0(x0)dµ(x1) · · · dµ(xn)

= ∫
S
(T n(f1 · T f2))(x)dµ(x).

Definition 4.1.Let T be a transition operator satisfying the condi-tions (23) and (24), and suppose there is a Perron-Frobenius measure µ0 on S, i.e.,
µ0 ◦ T = µ0. (28)

We say that T is ergodic if there is only one probabilitymeasure µ0 on (S, BS) which solves (28).If T is ergodic, and µ0 is the (unique) Perron-Frobeniusmeasure, then it follows from the Pointwise Ergodic The-orem that for all f ∈ L∞(S), the limit
lim
n→∞

T n(f) = µ0(f)11, (29)
pointwise a.e. exits on S, where 11 denotes the constantfunction 1 on S.
Corollary 4.1.
Let p, T , S, BS , µ, and (Zn) satisfy the conditions of
the theorem. Further assume T is ergodic with Perron-
Frobenius measure µ0. Then

lim
n→∞

E(p)((f1 ◦ Zn) · (f2 ◦ Zn+1)) = µ0(f1 · T f2) (30)
is satisfied for all f1, f2 ∈ L∞(S).

Proof. To verify (30), note that E(p)((f1 ◦Zn) · (f2 ◦Zn+1))is already computed in (27) in the theorem.Since µ is a probability measure, the conclusion (30) nowfollows from (29), i.e., form an application of the ErgodicTheorem.
4.3. Transition on solenoids
Let (S, µ) be a measure space, σ : S → S an endomor-phism as specified in Sec. 2. Let Ω ≡ Xσ (S) be the cor-responding solenoid. Let W : S → [0, 1] be a functionsatisfying ∑

y,σ (y)=xW (y) = 1; (31)
and let P = Pµ,σ,W be the corresponding path measure.
Lemma 4.2.
For the solenoid set Zn : Ω → S, Zn(x0, x1, x2, · · · ) = xn,
and (Tf)(x) = ∑

y,σ (y)=xW (y)f(y), for x ∈ S. Suppose
T has a Perron-Frobenius measure µ0. Then (Zn)n∈N0 is
stationary with transition operator T .
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Proof. Let f1, f2 be a pair of functions on S satisfying the conditions listed above. For the P-integration on pathspace Ω(= Xσ (S)) we then have:
E(µ0)((f1 ◦ Zn) · (f2 ◦ Zn+1)) = ∫

S

∑
x1

σ (x1)=x0
∑
x2

σ (x2)=x1
· · ·

∑
xn+1

σ (xn+1)=xn
W (x1)W (x2) · · ·W (xn+1)f1(xn)f2(xn+1)dµ0(x0)

= ∫
S

∑
x1

σ (x1)=x0
∑
x2

σ (x2)=x1
· · ·

∑
xn

σ (xn)=xn−1
W (x1)W (x2) · · ·W (xn)f1(xn)(Tf2)(xn)dµ0(x0)

= ∫
S
(T n(f1 · T f2))(x0)dµ0(x0)

= µ0(T n(f1 · T f2)) = µ0(f1 · T f2)= 〈f1, T f2〉L2(µ0).

4.4. Encodings
Let G = (G0, G1) be a graph where we write G0 for thevertices and G1 for the edges. Let S be a set. We saythat G yields an encoding of the points in S if there aremappings

τ0 : G0 → S, onto, and (32)
τ1 : G0 → Functions (S → S), (33)

such that for every e = (x, y) ∈ G1 we have
τ0(y) = τ1(e)τ0(x). (34)

Examples
G = the binary tree,

S = N0 = {0, 1, 2, · · · }
= {Finite∑

k=0 xk2k |xk ∈ {0, 1}}. (35)
If n ∈ N0 is given the finite word (x0x1x2 · · · ) in (4.6) iscomputed from the Euclidean algorithm for division with2.Points in G0 are represented by the empty word o, andby all finite words w = (x0x1 · · · xp). Set

τ0(w) = p∑
k=0 xk2k = n ∈ N0. (36)

Starting with w = (x0x1 · · · xp) ∈ G0, the three neighborsare (w0), (w1), and w∗ ≡ (x0x1 · · · xp−1) truncation, seeFig. 3.

Figure 2. Three nearest neighbors and then associated these edges
e0, e1 and e∗.

Set 
τ1(e0) ≡ n 7→ n; see (36);
τ1(e1) ≡ n 7→ n+ 2p+1; and
τ1(e∗) ≡ n 7→∑p−1

k=0 xk2k . (37)
Note that in this example, there is an additional pair ofmappaings N0 → N0{

σ 0(n) = 2n,
σ 1(n) = 2n+ 1, (38)

corresponding to the encoding mappings:

σ0 : (x0x1 · · · xp) 7→ (0x0x1 · · · xp)︸ ︷︷ ︸one step longer

,

σ1 : (x0x1 · · · xp) 7→ (1x0x1 · · · xp). (39)

Remark 4.1.The same construction works mutatis mutandis with
N’adic scaling rather than the dyadic representation of
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points in N0. Moreover, in the representation
n = p∑

k=0 xkN
k , (40)

the choices for xk may be from any complete set of residuesmodulo N, i.e., points in N0/N ·N0, or Z/NZ = the cyclicgroup of order N. The residues {0, 1, · · · , N − 1} is onlyone choice of many.
Encoding of ZThe representation used in (36) above works for Z as well,but with the following modification:

τ0(x0x1x2 · · · xp) ≡ −2p + p∑
k=0 xk2k . (41)

Explanation:
τ0(111 · · · 1︸ ︷︷ ︸

p+1 times
) = −2p + p∑

k=0 xk2k , with xk = 1, 0 ≤ k ≤ p
= −2p + 2p+1 − 1= 2p − 1.

Hence, with this convention we arrive at an encoding of
Z.
Graphs vs compactification:In the examples, we represent points in the vertex sets G0on a graph G by finite words in a specific finite alpha-bets. A choice of compactification Ω of G0 is the set ofinfinite paths γ, i.e., γ = (x0x1x2 · · · ) where xi ∈ G0, and(xi−1, xi) ∈ G1 for all i ∈ N.In each of the examples we present, we build measure
P on the compactifications Ω with use of Kolmogorov’sextension principle. This is a projective limit constructionwhich proceeds in three steps [11]:

(i) First specify P only on finite words, i.e., on cylindersets over G0
(ii) Check that the prescription of P on cylinders is con-sistent.
(iii) With Kolmogorov’s theorem than extend P to theBorel σ-algebra of subsets in Ω generated by thecylinder-sets [11, 15].

Definition 4.2.In later applications, the following two cases for P willplay a role: Consider the subset ΩFin in Ω consisting ofpaths γ = (x0x1x2 · · · ) which terminate in infinite repeti-tions, i.e., γ ∈ ΩFin ⇔ ∃ n such that xi = xn ∀ i > n. Themeasure P is said to be tight if and only if P(ΩFin) = 1.Alternatively, P(ΩFin) < 1.
Examples resumed:Wavelets. We adopt the standard terminology for dyadicwavelets in L2(R), specifically φ for a choice of scalingfunction; see [11]. Let (ak )k∈Z represent a wavelet filter,
i.e., satisfying the following three conditions:

∑
k∈Z

akak+2l = 12δ0,l, (42)
∑
k∈Z

ak = 1, and (43)
φ(x) = 2∑

k∈Z

akφ(2x − k). (44)
The function φ is in L2(R) and

∫
R
φ(x)dx = 1 (45)

is a chosen normalization.Let φ̂ be the R− Fourier transform.The following result is from [11]. Let Ω ≡ the set of allinfinite words, and view Ω as a compactification of thevertex set G0 of all finite dyadic words.
Lemma 4.3.
For every t ∈ R, there is a measure Pt on Ω such that

Pt(x0x1 · · · xp) = ∣∣φ̂(t + τ0(x0x1 · · · xp))∣∣2 , (46)
where τ0 : G0 → Z is the encoding of (41).

Lemma 4.4.
(See [11].)

(a) Consider the process (Zn) in (Ω,Pt) from (46) with

Zn (x0x1x2 · · · )︸ ︷︷ ︸
infinite word

≡ xn ∈ {0, 1}.
Then there is a transfer operator T such that the
process is T -stationary.
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(b) Let

W (eit) ≡ W̃ (t) = ∣∣∣∣∣∑
k∈Z

akeikt
∣∣∣∣∣
2
, (47)

where functions W on T are identified with 2π-
periodic functions W̃ on R, and where (ak ) is some
wavelet filter as in (42)-(44). The transfer operator T
is then given by

(TW f)(t) = W ( t2 )f( t2 ) +W ( t2 + π)f( t2 + π).
We say that W has scaling-degree 2.
Following (38), let a transition from n to n + 1 be
given by a choice of x ∈ {0, 1}.
Then

Et(ZnZn+1) = W̃ (t + xπ). (48)
Proposition 4.1.
Let φ ∈ L2(R) satisfying (44), and suppose ‖φ‖2 ≤ 1. LetΩ be the compactification derived from the encoding τ0 of
Z in (41) and let t ∈ (−π, π]. Let Pt be the measure onΩ from (46).

Part I
Then the following affirmations are equivalent:

(a) The translates {φ(· − k)|k ∈ Z} form an orthonormal
family in L2(R).

(b) The measures Pt are tight measures on Ω for all t.

(c)
∑

n∈Z |φ̂(t + n)|2 = 1 for all t ∈ R.

Part II
If the measures Pt are not tight, then the translates {φ(·−
k)}k∈Z still form a Parseval frame for the closed subspace
V (φ) they span, i.e., we have the identity

∑
k∈Z

∣∣∣∣∫
R
φ(x − k)f(x)dx∣∣∣∣2 = ∫

R
|f(x)|2dx for all f ∈ V (φ).

Proof. See [11].
Definition 4.3.Functions W on (−π, π] arising as in (47) for a system ofwavelet coefficients (ak )k∈Z (44), are called wavelet filters.A wavlet filter W is said to be low-pass if µ0 ≡ δ0, i.e., theDirac measure at θ = 0, is a Perron-Frobenius measurefor TW .In general, if W is a Lipschitz function, it is known that
TW has a Perron-Frobenius measure [3].

Example 4.1.[5] Set
WF (z) ≡ 16 |1 + z2| for z = eiθ. (49)

Then WF is a wavelet-filter under scaling by 3, but it is
not a low-pass filter.Indeed, the following scaling law holds for WF :∑

w3=zWF (w) = 1, ∀z = eiθ ∈ T1.

We say that WF has scaling degree 3.It is proved in [5] that WF induces a wavelet represen-tation on an L2-space built from the middle-third-Canterconstruction, “Cantor-dust” CD3 in R with Hausdorff mea-sure Hα , α = ln 2ln 3 , i.e., on L2(Cantor dust, Hα ).
Cantor dust CD3The points x ∈ CD3 ⊂ R are encoded by

x = a−k3k + a−k+13k−1 + · · ·+ a0 + ∞∑
i=0

ai3i ,
where k varies in N0, and where aj ∈ {0, 1, 2} for j ∈ Zsuch that −k ≤ j; but where aj attains the value 1 onlyfor at most a finite number of places.The Perron-Frobenius measure µ0 for TWF is singular withsupport (µ0) = T.
5. Reprocity rule for the spectrum
In the previous section we saw that a wide class of pro-cesses are governed by a transfer operator T . If the pro-cess in question takes places on a graph G = (G0, G1) withconductance c, then harmonic analysis on G is phrased interms of a Laplace operator ∆c as follows:

(∆cf)(x) =∑
y∼x

c(x, y)(f(x)− f(y)), for x ∈ G0.
Lemma 5.1.
Let (G, c) and ∆c be as above. Set p(x, y) = c(x,y)

c(x) for(x, y) ∈ G1 and let

(Tcf)(x) =∑
y∼x

p(x, y)f(y),
then (∆cf)(x) = c(x){f(x)− (Tcf)(x)}.
And conversely,

(Tcf)(x) = f(x)− 1
c(x) (∆cf)(x).
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Proof. Left to the reader.
Because of reference to harmonic analysis, we presentthe results in this section in terms of ∆c , but the lemmamakes a translation between ∆c and Tc immediate: Forexample, a function f on G0 satisfies ∆cf = 0 if and onlyif Tcf = f . Solution f to either one of these equations arecalled harmonic.
Definition 5.1.Let H be a Hilbert space, and D a dense linear subspace.An operator ∆ defined on D is said to be formally selfad-
joint if and only if

〈∆u, v〉 = 〈u,∆v〉
holds for all u, v ∈ D .
A further advantage of ∆c over Tc is that ∆c is formallyselftadjoint, (while Tc is not!).When we say that ∆c is formally selfadjoint, this appliesto either one of the two Hilbert spaces l2(G0), and HE ≡the energy Hilbert space.In the case of HE , we take for D the linear span of thefamily {vx |x ∈ G0} ⊂ HE ; see Lemma 5.2 and 5.3.We continue the setup from the previous section: G =(G0, G1) a fixed graph with vertices G0 and edges G1. Let
c : G1 → R+ be a fixed conductance function. Let ∆ = ∆cbe the Laplace operator. Fix an origin o in G0, and let
{vx}x∈G0\(0) be the system of dipoles.
Lemma 5.2.
[12] (Reproducing Kernel) The system {vx}x∈G0\(o) forms a
reproducing kernel in the sense:

〈vx , f〉E = f(x)− f(o) for all f ∈ HE , (50)
where HE is the energy Hilbert space.

Proof. The existence of {vx} is established with an ap-plication of Riesz’s lemma: If x ∈ G0, there is a path
γ(x) = x0 → x1 → · · · → xn, ei = (xi xi+1) ∈ G1, (gener-ally not unique) such that x0 = 0 and xn = x.By Cauchy-Schwarz, we get

|f(x)− f(o)|2 ≤∑
i

1
c(ei)‖f‖2E . (51)

Riesz’s lemma applied to HE , then yields ∃vx ∈ HE suchthat (50) is satisfied.

We claim that vx satisfies the dipole equation
∆vx = δx − δo, x ∈ G0 \ (o). (52)

This implies (52), and if ∆h = 0, then wx ≡ vx + h solves(52) as well; and vice versa.
Lemma 5.3.
[12] Let D0 ≡ spanC{δx}x∈G0 , and DE ≡ spanC{vx}x∈G0\(o).
By “span” we mean finite complex linear combinations, sowe consider all finite summations
D0 = {∑

x
axδx

}
, and DE = {∑

x
bxvx

}
, (53)

where {ax} and {bx} denote finite systems of scalars, ax ,
bx ∈ C.Then ∆ yields a density defined hermitian (i.e., formallyselfadjoint) operator in each of the Hilbert spaces l2(G0)and HE .Specifically, D0 is dense in l2(G0) and

〈u,∆v〉l2 = 〈∆u, v〉l2 , ∀u, v ∈ D0. (54)
Moreover, V is dense in HE , and

〈u,∆v〉E = 〈∆u, v〉E , ∀u, v ∈ DE . (55)
Proof. The symmetry property (54) is immediate fromthe definition of ∆.We now prove (55): Since both sides in (54) are sesquilin-ear, it is enough, by (53), to prove

〈vx ,∆vy〉E = 〈∆vx , vy〉E , ∀x, y ∈ G0 \ (o). (56)
We have

〈vx ,∆vy〉E =by (52) 〈vx , δy − δ0〉E
=by (50) (δy − δ0)(x)− (δy − δ0)(o)

= δx (y) + 1=by symmetry 〈δx − δ0, vy〉E
=by (52) 〈∆vx , vy〉E ,

which is the desired Eq. (56).
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5.1. Two Hilbert spaces
Let G = (G0, G) be as above; and let c : G1 → R+ bea fixed conductance function. Let ∆ and T be the corre-sponding operators, ∆ = ∆c the Laplace operator, and

(Tf)(x) = f(x)− 1
c(x) (∆f)(x), x ∈ G0. (57)

Pick a fixed o ∈ G0, and let (vx )x∈G0\(o) be the correspond-ing reproducing kernet.It is important to understand the two operators in the twoHilbert spaces l2(G0) and HE . By (57), it is enough toconsider just ∆.As an operator in l2(G0), the operator ∆ has as its domain
D0 ≡ all finite linear combinations of {δx}x∈G0= span {δx}x∈G0 ;

while the domain in HE is
DE ≡ span {vx |x ∈ G0 \ (o)}.

Theorem 5.1. (a) The domains in l2 and in HE :

(i) D0 is a dense subspace in l2(G0); and
(ii) DE is a dense subspace in HE .
(iii) If ]Nbh(x) < ∞ for all x ∈ G0, then ∆ maps D0

into itself; and ∆E maps DE into itself.

(b) For all vectors φ, ψ ∈ D0, we have:

(i)

〈φ,∆φ〉l2 = ∑
x∈G0 c(x)|φ(x)|2 −∑

x

∑
y

x∼y

c(x, y)φ(x)φ(y);

(ii) 〈φ,∆φ〉l2 ≥ 0; and
(iii) 〈φ,∆ψ〉l2 = 〈∆φ, ψ〉l2 .

(c) For all vectors φ, ψ ∈ DE , we have:

(i)

〈φ,∆φ〉HE = ∑
x∈G0\(o) |(∆φ)(x)|2 +

∣∣∣∣∣∣ ∑x∈G0\(o)(∆φ)(x)
∣∣∣∣∣∣
2 ;

(ii) 〈φ,∆φ〉HE ≥ 0; and
(iii) 〈φ,∆ψ〉HE = 〈∆φ, ψ〉HE .

Proof. The proof of (b)(ii) is a sequence of steps withrepeated application of Cauchy-Schwarz’s inequality. Theproof of (a)(i) is an application of the last equation in theproof of Lemma 5.3.
Remark 5.1.The operator ∆l2 in l2, or ∆E in HE , may be bounded orunbounded. In all cases ∆l2 is essentially selfadjoint in
l2 [12]; but ∆E may have defect-subspaces.
5.2. Dichotomy
Remark 5.2.[12] For the graph system (G, c) = (tree, 11) the Laplaceoperator (∆, D0) is bounded and selfadjoint in l2(G0). Forthe energy Hilbert space HE (tree), (∆, DE ) is an un-
bounded Hermitian operator. In fact, ∆ is not essentiallyselfadjoint on ∆; i.e., (∆, DE ) has a infinite family of dis-tinct selfadjoint extensions in the Hilbert space HE .
Lemma 5.4.
Let H〈·, ·〉 be a complex Hilbert space, and let D be a
dense linear subspace in H.
Let L be a closed Hermitian operator defined on D , i.e., L
is linear and satisfies

〈u, Lv〉 = 〈Lu, v〉 ∀u, v ∈ D . (58)
Then the spectrum of ∆ is the closure of the set

NS(L) ≡ { 〈u, Lu〉‖u‖2
∣∣∣∣ u ∈ D \ (o)} . (59)

Proof. The Hermitian property (58) implies that thespectrum of L is contained in R.Now suppose λ0 ∈ R, and that
dist(λ0, NS(L)) = ε1 > 0. (60)

We will show that λ must then be in
R \ spec(L) = the complement of the spectrum= the resolvent set.

Let u ∈ D \ (o). Then
‖λ0u − Lu‖2 = λ20‖u‖2 − 2λ0〈u, Lu〉+ ‖Lu‖2.
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Setting x1 ≡ 〈u,Lu〉
‖u‖2 ∈ NS(L), we get

‖λ0u − Lu‖2 = ‖u‖2 · (λ0 − x1)2 − ‖u‖2x21 + ‖Lu‖2
≥

by (60) ‖u‖2 · ε21 + ‖Lu‖2 − 〈u, Lu〉2‖u‖2 (61)
≥ ‖u‖2 · ε21 ,

where we used Schwarz’ inequality in the last step; viz.,
〈u, Lu〉2 ≤ ‖u‖2 · ‖Lu‖2;

or
‖Lu‖2 − 〈u, Lu〉2‖u‖2 ≥ 0.

By virtue of the inequality (2.11), we may define an oper-ator
R0 = R(λ0) : range(λ0I − L) −→ H

by
R0(λu − Lu) = u. (62)

Extend R0 by setting it = 0 on the ortho-complement
(range(λ0I − L))⊥ = N(λ0 − L∗). (63)

Here L∗ denotes the adjoint operator.From (62), we calculate that R0 : H → H defines abounded inverse to λ0I − L, and so λ0 ∈ resolvent(L); andconversely.
Let {vx}x∈G0\(0) be the system of dipoles, and set

M ≡ (〈vx , vy〉E ) (64)
viewed as a Hermitian matrix, x = row index, y = columnindex.If ξ = (ξx ) ∈ F ⊂ l2(G0), set

(Mξ)x =∑
y
Mx,yξy, (65)

matrix multiplication, where
Mx,y ≡ 〈vx , vy〉E .

Then M is a density defined Hermitian operator in l2(G0).

Theorem 5.2.
Let (G, µ) be given and let ∆ be the corresponding density
defined Hermitian operator in HE . Then

specHE (∆) ⊂ [0,∞) (66)
and

specHE (∆) = (specl2 (M))−1, (67)
where we use the charactors 10 =∞, and 1

∞ = 0.
Moreover,

(specl2 (M))−1 = {1/λ|λ ∈ specl2 (M)}. (68)
Proof. For (ξx ) ∈ F , set

u ≡
∑

x∈G0\(0) ξxvx . (69)
Then u ∈ V, and

〈u,∆u〉HE =∑
x

∑
y
ξxξy〈vx ,∆vy〉E (70)

=∑
x

∑
y
ξxξy(δx (y) + 1) (71)

=∑
x
|ξx |2 + ∣∣∣∣∣∑

x
ξx

∣∣∣∣∣
2
≥ 0. (72)

Since vectors in HE are equivalence classes modulo theconstant function on G0, we may add the restriction∑
x ξx = 0 in (69), and the operator ∆ will be unchanged.The modified equation (2.22) then needs

〈u,∆u〉E = ‖ξ‖22. (73)
Claim 5.1.

‖u‖2HE = 〈ξ,Mξ〉l2 . (74)
Proof. (of Claim 2.6). We compute:

‖u‖2E = 〈u, u〉E=∑
x

∑
y
ξxξy〈vx , vy〉

=
by 69

∑
x
ξx (Mξ)x

= 〈ξ,Mξ〉l2 ,
as claimed.
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The desired conclusion (67) now follows: If u ∈ V \ (o) isgiven by (69), then
〈u,∆u〉E
‖u‖2E = ‖ξ‖22

〈ξ,Mξ〉 . (75)
By taking closure, we obtain the sets on the two sidesin (67)
Corollary 5.1.
If ξ = (ξx ) ∈ F (G0 \ (o)), then the representation

u =∑
x
ξxvx (76)

is unique; in particular, the system (vx )x∈G0\(o) is linearly
independent.

Proof. Let u ∈ V have a representation (76) as a finitesummation with ξx ∈ C.Let y ∈ G0 \ (o). Then
〈δy, u〉E =∑

x
ξx〈δy, vx〉E

=
by (50)

∑
x
ξx (δy(x)− δy(o))

= ξy.

In particular, if u = 0, then ξy = 0, ∀y ∈ G0 \ (o).
Corollary 5.2.
If F ⊂ G0 \ (o) is a finite subset, then 0 is not in the
spectrum of the matrix

MF ≡ (〈vx , vy〉E )x,y∈F . (77)
Suppose o ∈ spec(MF ) where F is a fixed as in the state-ment of the Corollary 5.2. Then

∃ξ ∈ l2(F \ (o))
such that (Mξ)x =∑

y∈F

〈vx , vy〉Eξy = 0. (78)
Setting u ≡∑y∈F ξyvy we note that

u ∈ ({vx}x∈F )⊥. (79)

Figure 3. Encoding of vertices.

Claim 5.2.

u ∈ ({vx}x∈G0\(o))⊥. (80)
We need to prove this only if x ∈ G0 \ F.
Combining (74) and (78), we get

‖u‖2E = 〈ξ,Mξ〉l2= 〈ξ, 0〉l2= 0,
so u = a constant function on G0, and (80) is satisfied.

6. The energy-inner product
(G, c) = (treeT , 1), o = ∅, c ≡ 1. Explicitly form for vx ,
x ∈ G0 \ (o). Set

x = (a1a2a3 · · · an) ∈ G0 \ (o) ai ∈ A = 0, 1. (81)

γ(x) = {(oa1), (a1a2), (a2a3),
· · · , (an−2an−1), (an−1an)}, (82)

where γ(x) is a path. Note γ(x) ⊂ G1 = edges in T .
Example 6.1.
x = 101 vertex, {(φ, 1), (1, 10), (10, 101)} = γ(x) ]γ(x) = 3.
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Theorem 6.1.
Let (T , 1) be as usual, o = ∅, and let HE = the 0 energy
span

‖f‖2E = 12∑x
∑
y

x∼y

(f(x)− f(y))2, (83)
but with edges (x, xb) = e, x ∈ G0, b ∈ A = {0, 1},
c(e) ≡ 1. Then the function

vx (y) ≡ ](γ(x) ∩ γ(y)) (84)
solves

〈vx , f〉E = f(x)− f(o), ∀f ∈ HE , (85)
∆vx = δx − δo, x ∈ G0 \ (o) (86)

and

〈vx , vy〉E = ](γ(x) ∩ γ(y)) ∀x, y ∈ G0 \ (o). (87)
Proof. Proof of (86). By (84) x = (a1a2 · · · an) ∈ G0 \(o). Let x be as in (82). Set γ(x) = RHS in (82) ⊆ G1.Neighbors of

x −→ a1 · · · an−1
−→ x0
−→ x1.

If x = a, n = 1, Nbh(x) = {o, a0, a1}.
Casesn=1 See Fig. 5

(∆vx )(o) = 2vx (o)− vx (0)− vx (1)= 0− 1= δx (o)− δo(o),
(∆vx )(x) = 3vx (x)− vx (o)− vx (x0)− vx (x1)=

use (84) 3− 0− 1− 1 = 1
= (δx − δo)(x).

Now, let y ∈ G0 \ {o, x}. y = (b1b2 · · · bk ), bi ∈
A = {0, 1}. Suppose x ⊆ y

∆vx (y) =
by (84) 3− 1− 1− 1 = 0.

More cases are ≡ 0.

Figure 4. Case 1.

n>1 x = (a1a2 · · · an). A computation yields
∆x (o) = 0− vx (0)− vx (1) = 0− 1 = −1,

∆x (x) = 3n − (n − 1)− 2n = 1= (δx − δo)(x),
∆x (y) = 0 y ∈ G0 \ {o, x}.Several cases e.g. y ≤ x, etc.

∆x (y) = 3vx (y)− vx (b1 · · · bk−1)− vx (y0)− vx (y1)= 3k − (k − 1)− (k + 1)− k = 0, etc.
Computation of
‖vx‖2E = E(vx )

= 12∑s
∑
t

s∼t

cs,t(vx (s)− vx (t))2
= 〈vx ,∆vx〉l2 =

by (86) 〈vx , δx − δo〉l2= vx (x)− vx (o) = n − 0= ](γ(x)),

〈vx , vy〉E =all finite functions, see (84) 〈vx ,∆vy〉l2=
by (86) 〈vx , δy − δo〉l2=
by (84) vx (y)− vx (o) = 0

=
by (84) ](γ(x) ∩ γ(y)).
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Figure 5. Case 2.

Figure 6. Intersection of two paths.

Set M = (〈vx , vy〉E ) = (](γ(x) ∩ γ(y))), x, y ∈ G0 \ (o).Given specl2 (M) = (specHE (∆))−1specHE (∆)→∞ .
From our theorem above ∆ (unbounded spectrum),closure∆ = V, V ⊂ HE .
Corollary 6.1.
∀ε ∃F ⊂ G0\(o) finite, ∃λ ∈ specl2 (MF ) such that λ < ε.

Note
MF = (〈vx , vy〉E )x,y∈F= (](γ(x) ∩ γ(y)))x,y∈F

and 0 /∈ specl2 (MF ).Problem: Find a systematic way of selecting F . SeeFig. 7.It is much easier to find MF with specl2MF →∞.
Example 6.2.1 0 10 2 01 0 2

 or (1 11 n

)
, (88)

λ±n = n+ 1±√(n+ 1)2 − 4(n − 1)2 , and

Figure 7. Google matrix.

λ−n = n+ 1−√(n+ 1)2 − 4(n − 1)2= 2(n − 1)
n+ 1−√n2 − 2n+ 2

−→
n→∞

1.
Actually both expand part of specl2M as intervals.

7. Karhunen-Loève
Definition 7.1.
F ⊂ G0 \ (o) F finite, G0 infinite, (G, c) fixed. Fix o ∈
G0  ∆ = ∆c , HE energy Hilbert space 〈vx , f〉E = f(x)−
f(o), ∀f ∈ HE .
Definition 7.2.
HE (F ) ≡ spanx∈F{vx}
General (G, c)→ Fix point o ∈ G0 → ∆c , HE , G0 infinite.Fix vx , for x ∈ G0 \ (o), determined from Riesz applied to
HE .

〈vx , f〉E = f(x)− f(o), x ∈ G0 \ (o), (89)
and consider the infinite matrix

M = (〈vx , vy〉E ), x, y ∈ G0 \ (o) (90)
and its finite F × F submatrices

MF = (〈vx , vy〉E ), x, y ∈ F, (91)
so the matrices are ∞×∞, or |F| × |F|.
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Important formula
Observe

〈vx , vy〉E = vy(x)− vy(o) (92)= vy(x) = vx (y); (93)
in other words kE (x, y) ≡ vx (y) is a reproducing kernel.Since x, y ∈ G0 \ (o); and vx : G0 → R (i.e., real valued)convention: vx (o) = 0. Diagonalization motivated by theclassical Karhunen-Loève theorem, see [14] and [17].
7.1. Finite-dimensional approximation
Apply the Spectral Theorem to M and MF . The Hilbertspace is l2(G0) or l2(F ) ' C|F| with 〈ξ, η〉2 = ∑

x ξxηx asinner product.For (MF , l2(F )) the spectrum is always discrete, and forsome cases i.e., (M, l2(G0)) it may not be discrete.In the discrete case, there exists M = Mf ONB
ξ1, ξ2, . . . ∈ l2(G0) or l2(F ) eigenvectors
〈ξj , ξk〉2 =∑

x
ξj (x)ξk (x) = δj,k = {0 if j = k,1 if j 6= k,

(94)
ξ = ξF ∈ l2(F ) such that
MFξj = λjξj , λ1 ≥ λ2 ≥ · · · > 0,

ξj ∈ l2(F ), ‖ξj‖2 = 1 (in the F-case). (95)
In the infinite case spec(M) for l2(G0) may accumulateboth at 0 and at ∞.Since MF

xy = 〈vx , vy〉EΛ ∈ R, we may take all ξk : G0 → Rreal valued. Fix F ⊂ G0 \ (0): ξFk ∈ l2(F ). Set
wF
k (·) = 1

λk

∑
x∈F

ξFk (x)vx (·)
i.e.,

wF
k (z) = 1

λk

∑
x∈F

ξFk (x)vx (z), ∀z ∈ G0. (96)
Lemma 7.1.
If F is fixed then ξFk ∈ l2(F ) is an ONB. Set

MFξFk = λFk ξFk , (97)
then

wF
k : G0 → R, wF

k ∈ HE

is an extension of ξFk : F → R from F to G0.

Proof. By (96) if z ∈ F :
wF
k (z) = 1

λk

∑
x∈F

vx (z)ξFk (x)
=by(4.4) 1

λk

∑
x∈F

Mz,xξFk (x)
=by (97) 1

λk
(MFξFk )z

= λk
λk
ξFk (z)

= ξFk (z).

Lemma 7.2.
Fix F ⊂ G0 \ (0) finite, and let

wF
k (·) = 1

λk

∑
x∈F

ξFk (x)vx (·), k ∈ (1, 2, · · · , |F|). (98)
as in Lemma 7.1. Then {wF

k }k is an orthonormal system
in HE (thus in each of the Hilbert spaces) i.e., with the
inner product

〈u, v〉E ≡
12 ∑

all xy

∑
x∼y

cxy(u(x)− u(y))(v(x)− v(y)). (99)
We have

〈wF
j , wF

k 〉E = 1
λk
δj,k = { 1

λk
if j = k,0 if j 6= k.

(100)
Proof. We have:
〈wF

j , wF
k 〉E =by (98) 1

λjλk

∑∑
xy∈F

ξFj (x)ξFk (y)〈vx , vy〉E
=by (91) 1

λjλk

∑
x∈F

ξFj (x)∑
y∈F

MF
xyξFk (y)

= 1
λjλk
〈ξFj ,MFξFk 〉2

= 1
λj
〈ξFj , ξFk 〉2

=by (94) 1
λj
δj,k = { 1

λj
if k = j,0 if k 6= j.

Set uFj = √λjwF
j ; then

〈uFj , uFk 〉E = δj,k , j, k ∈ {1, 2, · · · , |F|}.
360

Author c
opy



Palle E. T. Jorgensen, Myung-Sin Song

7.2. Normalization
The following different normalization uFj = √

λjwF
j satis-fies

‖uFj ‖HE = 1, (101)
so

uFj (·) = 1
λj

∑
x∈F

ξj (x)vx (·). (102)
Note that the

uFj |F = √λjξj (·) on F . (103)
7.3. Projection valued measures
Set

PF (λj ) ≡ |uFj >< uFj |; (104)
Dirac notation for rank-one projection, so a projection in
HE on the one-dimensional subspace CuFj . Then PF (·) isan orthonormal projection system, and it has a limit as
F → ∞ which is a global spectral measure.We claim that

s∆(uFj ) = 〈uFj ,∆uFj 〉 ∈ specHE (∆v). (105)
Lemma 7.3.
(Spectral Reprocity)

s∆(uFj ) = 1√
λj

1 + ∣∣∣∣∣∑
x∈F

ξj (x)∣∣∣∣∣
2 . (106)

Proof.

s∆(uFj ) =
by (102) 1√

λj

〈(∑
x∈F

ξj (x)vx) ,∆
∑

y∈F

ξj (y)vy
〉

E= 1√
λj

∑
x∈F

∑
y∈F

ξj (x)ξj (y)〈vx ,∆vy〉E
= 1√

λj

∑
x∈F

∑
y∈F

ξj (x)ξj (y)(δx (y) + 1)
= 1√

λj

‖ξj‖22 + ∣∣∣∣∣∑
x∈F

ξj (x)∣∣∣∣∣
2

=
by (101) 1√

λj

1 + ∣∣∣∣∣∑
x∈F

ξj (x)∣∣∣∣∣
2 .

Example 7.1.

MF = (1 00 3) , sp = {1, 3},
same spectrum, but different MF .

ξλ=1 = (10) , ξλ=3 = (01) , 〈ξ1〉 = 〈ξ3〉 = 1.
Set RF (λ) ≡ 1

λ (1 + ∣∣〈ξFλ 〉∣∣2). Then 〈uλ,∆uλ〉 = RF (λ); seeLemma 7.3.In the examples:
MF = (2 11 2

)
,
{
RF (1) = 1,
RF (3) = 13 (1 + 2) = 1,

smaller for MF off-diagonal.
MF = (1 00 3

)
,
{
RF (1) = 11 (1 + 12) = 2,
RF (3) = 13 (1 + 12) = 23 ,

MF = (3 33 7
)
, λ± = 5±√13,

MF = (3 11 4
)
, λ± = 7±√52 ,

λ = 5±√13⇒ R(λ) = 1
λ + λ1 + ( 2−√133 )2 < 1

λ + λ,

MF = (1 11 m

)
, m → ∞,

λ± = m+ 1±√(m+ 1)2 − 4(m− 1)2 .

In both cases, we have:
RF (λ) = 1

λ + λ1 + (λ − 1)2 ,
RF (λ−) = λ+

m− 1 + λ−1 + (λ− − 1)2 ∼ 4 as m →∞.
We now illustrate by an example that points in the spec-trum can go into ∞:

s∆(u) = 〈u,∆u〉
‖u‖2E →∞.

If λ ∈ specl2 (MF ) set uλ = 1√
λ

∑
x∈F ξλ(x)vx (·) Mξλ = λξλ,

‖ξλ‖2 = 1 ⇒ ‖uλ‖E = 1 so s∆(u) = 〈u,∆u〉 = 1
λ (1 +

‖Pλe‖22), e = eF = χF (·), Pλe = 〈ξλ, e〉2ξλ.
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Figure 8. Table of distances.

Theorem 7.1.
The truncated operators PHE (F )∆DEPHE (F ) has spectral
growth ' O(]F ); so ∆E is unbounded in HE .

Proof. The idea is to perform a diagonalization of aninfinite matrix (Mx,y) x, y ∈ G0 \ (o); a method inspiredby Karhunen-Loève [14, 17]. Here F ⊂ G0 \ (o) is fixedand finite. The following computations refer to F : (ξk )is an ONB in l2(F ) satisfying (107) below; set wk =1
λk

∑
x∈F ξk (x)vx , and vk = √λkwk = 1√

λk

∑
x∈F ξk (x)vx .Then

MFξk = λkξk , and 〈ξj , ξk〉l2(F ) = δj,k . (107)
We may now compute the matrices:
〈uj ,∆uk〉E = 1√

λjλk

∑∑
F×F

ξj (x)ξk (x)〈vx ,∆vy〉E
= 1√

λjλk

∑∑
F×F

ξj (x)ξk (x)(δx (y) + 1).
Set ∑x∈F ξj (x) = 〈ξj , e〉2 = 〈ξj〉 where e = eF = χF .Then the matrix entries are: Off-Diagonal:

〈uj ,∆uk〉E = 1√
λjλk

(δj,k + 〈ξj〉〈ξk〉);
and Diagonal:

〈uj ,∆uj〉E = 1
λj

(1 + 〈ξj〉2).
We further used the following identity:∑∑

F×F

δx (y)ξj (x)ξk (y) = 〈ξj , ξk〉l2 (F )
= δj,k by (107).

This may be summarized in the following matrix form:
1
λ1 (1 + 〈ξ1〉2) 〈ξ1〉〈ξ2〉√

λ1λ2
〈ξ1〉〈ξ3〉√

λ1λ3 · · ·
〈ξ1〉〈ξ2〉√

λ1λ2 1
λ2 (1 + 〈ξ2〉2) 〈ξ2〉〈ξ3〉√

λ2λ3 · · ·
〈ξ1〉〈ξ3〉√

λ1λ3
〈ξ2〉〈ξ3〉√

λ2λ3 1
λ3 (1 + 〈ξ3〉2) · · ·... ... ... . . .

 .

If for some δ ∈ R+, λj ≥ δ, i.e., bounded from below, thenthe operator 
1
λ1 0 0 0 · · · 00 1

λ2 0 0 · · · 00 0 1
λ3 0 · · · 0... ... ... ... . . . 0


is bounded. So ( 1√

λjλk
〈ξj〉〈ξk〉

) (108)
must be unbounded, i.e., ‖ · ‖l2(F )→l2(F ) →∞. But (108) isa rank-one operator;
|ρ >< ρ|, ρ = ρF ; F ⊂ G0 \ (o) is fixed,where ρ = (ej ) ∈ l2(1, 2, · · · , ]F ),

i.e., ρ = ρF and ρFj = 〈ξFj 〉√
λj

, λj = λFj .Now,
‖ρF‖2l2(1,··· ,]F ) = ]F∑

j=1
〈ξFj 〉2
λj

.

So in conclusion
lim
F→∞

]F∑
j=1
〈ξFj 〉2
λj (F ) =∞.

Pick δ ∈ R+ and assume λFj ≥ δ. Then we need
lim
F→∞

]F∑
j=1 〈ξ

F
j 〉2 =∞.

We have ξFλ (j) = ξj , MFξFλ = λFj ξFλ , ‖ξλ‖2 = 1, 〈ξFλ 〉 =∑
x∈F ξFλ (x), and ∑λ〈ξFλ 〉2 = ]F ; so indeed

lim
F→∞

∑
λ

〈ξFλ 〉2 = lim
F
]F =∞.

Conclusion: specHE (N)(∆DE ) ∼ (]F )→∞.
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