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Abstract: We offer a spectral analysis for a class of transfer operators. These transfer operators arise for a wide
range of stochastic processes, ranging from random walks on infinite graphs to the processes that govern
signals and recursive wavelet algorithms; even spectral theory for fractal measures. In each case, there
is an associated class of harmonic functions which we study. And in addition, we study three questions in
depth:

In specific applications, and for a specific stochastic process, how do we realize the transfer operator T as
an operator in a suitable Hilbert space? And how to spectral analyze T once the right Hilbert space H has
been selected? Finally we characterize the stochastic processes that are governed by a single transfer
operator.

In our applications, the particular stochastic process will live on an infinite path-space which is realized in
turn on a state space S. In the case of random walk on graphs G, S will be the set of vertices of G. The
Hilbert space H on which the transfer operator T acts will then be an L2 space on S, or a Hilbert space
defined from an energy-quadratic form.

This circle of problems is both interesting and non-trivial as it turns out that T may often be an unbounded
linear operator in H; but even if it is bounded, it is a non-normal operator, so its spectral theory is not
amenable to an analysis with the use of von Neumann’s spectral theorem. While we offer a number of
applications, we believe that our spectral analysis will have intrinsic interest for the theory of operators in
Hilbert space.
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1. Introduction

*E-mail: jorgen@math.uiowa.edu
"Work supported in part by the U.S. National Science Foundation In this paper, we consider infinite configurations of vectors

FE-mail: msong@siue.edu (Corresponding author) (fx)kez in a Hilbert space ‘H. Since our Hilbert spaces H
are typically infinite-dimensional, this can be quite com-
plicated, and it will be difficult to make sense of finite and
infinite linear combinations ), _, cfy.

In case the system (f;) is orthogonal, the problem is easy,
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but non-orthogonality serves as an encoding of statistical
correlations, which in turn motivates our study. In ap-
plications, a particular system of vectors f; may often be
analyzed with the use of a single unitary operator U in
‘H. This happens if there is a fixed vector ¢ € H such
that f, = U¥e for all k € Z. When this is possible, the
spectral theorem will then apply to this unitary operator.
A key idea in our paper is to identify a spectral density
function and a transfer operator, both computed directly
from the pair (¢, U).

We show that the study of linear expressions ), ¢, fy may
be done with the aid of the spectral function for a pair
(¢, U). A spectral function for a unitary operator U is
really a system of functions (p,), one for each cyclic sub-
space H(¢). In each cyclic subspace, the function p,, is
a complete unitary invariant for U restricted to H(¢): by
this we mean that the function p, encodes all the spec-
tral data coming from the vectors f, = U*g, k € Z. For
background literature on spectral function and their ap-
plications we refer to [1, 10, 16, 19-21].

In summary, the spectral representation theorem is the as-
sertion that commuting unitary operators in Hilbert space
may be represented as multiplication operators in an [%-
Hilbert space. The understanding is that this represen-
tation is defined as a unitary equivalence, and that the
[2-Hilbert space to be used allows arbitrary measures,
and L2 will be a Hilbert space of vector valued functions,
see e.g., [6]. Because of applications, our systems of vec-
tors will be indexed by an arbitrary discrete set rather
than merely integers Z.

We will attack this problem via an isometric embedding of
H into an [%-space built on infinite paths in such a way
that the vectors f; in ‘H transform into a system of random
variables Z;. Specifically, via certain encodings we build
a path-space Q for the particular problem at hand as well
as a path space measure P defined on a o-algebra of
subsets of Q.

If H consists of a space of functions f on a state space S,
we will need the covariance numbers

E((fi 0 Zy) - (0 Zy)) = /Q f(Za (V) F2(Zn(v))dB(y),

where Z, : Q — S, ie., where the stochastic process is
S-valued. The set S is called the state space.

The paper is organized as follows. In Sec. 2, for later use,
we present our path-space approach, and we discuss the
path-space measures that we will use in computing tran-
sitions for stochastic processes. We prove two theorems
making the connection between our path-space measures
on the one hand, and the operator theory on the other.
Several preliminary results are established proving how

the transfer operator governs the process and its applica-
tions.

The applications we give in Sec. 3 and 4 are related. In
fact, we unify these applications with the use of an en-
coding map which is also studied in detail. It is applied
to transitions on certain infinite graphs, to dynamics of
(non-invertible) endomorphisms (measures on solenoids),
to digital filters and their use in wavelets and signals, and
to harmonic analysis on fractals.

The remaining sections deal primarily with applications
to a sample of concrete cases.

2. Stochastic processes

A key tool in our analysis is the construction of path-
space measures on infinite paths, primarily in the case of
discrete paths, but the fundamental ideas are the same
in the continuous case. Both viewpoints are used in [12].
Readers who wish to review the ideas behind there con-
structions (stochastic processes and consistent families of
measures) are referred to [7-9] and [18].

Let (Q,F,P) be a Borel probablity space, Q) compact
Hausdorff space. (Expectation E()) = [, -dP))

Let (Zk)k>0 be a stochastic process, and

F, = o-alg.{Zlk < n}, (1

the corresponding filtration. Let A, = the subspace in
L%(Q,P) generated by F,. Let P, be the orthogonal pro-
jection of L2(Q,P) onto A,; then the conditional expecta-
tions E(-|F,) is simply = P,.

We say that (Zi)k>0 has the generalized Markov property
if and only if there exists a state space S (also a compact
Borel space):

ZkZQ—>S,

such that for all bounded functions f on S, for all n € Ny,
E(f|F,) = E(f|Z,).

To make precise the operator theoretic tools going into our
construction, we must first introduce the ambient Hilbert
spaces. We are restricting here to [? processes, so the
corresponding stochastic integrals will take values in an
ambient [?-space of random variables: For our analysis,
we must therefore specify a fixed probability space, with
o-algebra and probability measure.

We will have occasion to vary this initial probability space,
depending on the particular transition operator that gov-
erns the process.

In the most familiar case of Brownian motion, or random
walk, the probability space amounts to a somewhat stan-
dard construction of Wiener and Kolmogorov, but here with
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some modification for our problem at hand: The essential
axiom in Wiener's case is that all finite samples are jointly
Gaussian, but we will drop this restriction and consider
general stochastic processes, and so we will not make re-
stricting assumptions on the sample distributions and on
the underlying probability space. For more details, and
concrete applications, regarding this stochastic approach
and its applications, see Sec. 2 and 4 below.

We begin here with a particular case of a process taking
values in the set of vertices in a fixed infinite graph G: [13]

2.1. Starting assumptions and constructions

(@) G = (G G") a graph, G° = the set of vertices, G' =
the set of edges.

(b) (S.Bs, u) a probability space.

(c) The transition matrix is the function

pix.y) =P({y € Q|Z,(y) = x, Zosa(y) = y})

defined for all (x,y) € G', and we assume that it is
independent of n.

(d) From (a) and (b), we construct the path space
Q= {y=(xoxx)|(x_1x) € G', Vi € N},

and the path-measure P = P,. The cylinder sets
given by the following data: For E; € Bs, x; C S, set

P(C(E1,---,En))z/5/E---/Ep(xO,mpm,xZ)
ot xa) i) i) - - dp().

(e) Starting with (Q, F,P), if G C F is a subsigma alge-
bra, let E(-|G) be the conditional expectation, condi-
tioned by G.

If (X;) is a family of random variables, and G is the o-
algebra generated by (X;) we write E(-|(X:)) in place
of E(-|G).

(f) Let (Q,F,P,(Z,)) be as above. We say that (Z,) is
Markov if and only if

E(f 0 Zys11{Zo, - -+ Zn}) = E(f 0 Zy11|Z0)
for all n € Np.

(g) From (b) and (d) we define the transfer operator T
by

(TF)(x) = /SP(X,y)f(y)du(y) ()

for measurable functions f on S. If 1 denote the con-
stant function 1 on S, then 71 = 1.

(h) Let (S,Bs,u) and T be as in (g), see(2). A measure
1o on S is said to be a Perron-Frobenius measure it
and only if

/ (TA)(N)duo(x) = [ () dpio(x),
) S

abbreviated oo T = 9. (3)

(i) Let (Q,F,P) be as above, and let T be the transfer
operator. If yp is a Perron-Frobenius measure, let
[P0) be the measure on Q determined by using yg as
the first factor, i.e.,

(ko) A _ L
PYC(Er, -+ En)) /Eo /51 /E p(xo, x1)p(x1, x2)
o p(Xn—1, Xa)diio(xo)du(xa) - - - dpi(x,)

:[E Py (C(Er -+ , Ex)dp(xo)-

In many cases, it is possible to choose specific Perron-
Frobenius measures py, i.e.,, measures fi satisfying

40(S) = 1 and /S (TA)(N)duo(x) = ]S F(x)diio(x):

(Note the normalization!)

Theorem 2.1.
(D. Ruelle) [2] Suppose there is a norm || - || on bounded
measurable functions f on S such that the | - |-completion

L(S) is embedded in L*(S), and that there are constants
a € (0,1), M € R, such that

ITH < allf]l + Ml oo,

where | - || is the essential supremum-norm. Then T has
a Perron-Frobenius measure.

Theorem 2.2.

Let (S, ) be a probability space with S carrying a sep-
arate o-algebra Bs and p defined on Bs. Let Q be the
path space, and suppose the transfer operator T has a
Perron-Frobenius measure [, then

E (@ 0 Z,) (¢ 0 Zoia)) = (@, T)iz) (4)
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for all @, € *(u), and all n € Ny. Here E(F) =
Jq F(w)dP(w) for all integrable random variables F : Q —
C, E for expectation.

Proof.

(g 0 Z,)(h 0 Zoss / j / X0, 31) -~ P X1, )P (ki X 1)@ ) 1) o (x0) 1) - i)
] / j x0,1) < Pk, %06 ) (T ) ) o xo) dixr) - - ()
- /5 T"(@ - (T4))(xo)dio(x0)

:/a(x)(n//)(x)dllo(x) by Perron-Frobenius
s

= (o, T¢)L2(uo)~

O

It is not necessary in (4) to restrict attention to functions ¢, in [%(g). The important thing is that the integral
fSW(TL/J)(x)dpo(x) exists, and this quantity may then be used instead on the RHS in (4).

Let (Z,)nen, be a stochastic process, and let F, be the g-algebra generated by {Z;| 0 < k < n}. Futhermore, let E(-|F,)
be the conditioned expectation conditioned by F,.

Theorem 2.3.

Let (Z,)nen, be a stochastic process with stationary transitions and operator T. Then
E(f 0 Z,41|F,) = (Tf) o Z, 5)
for all bounded measurable functions f on S, and all n € N.

Proof. We may assume that f is a real valued function on S. Let A, = all bounded F,-measurable functions. Then
the assertion in (5) may be restated as:

[ o(F 0 Zy,1)dP = [ o((Tf) 0 Z,)dP (6)
Q Q

forall ¢ € A,.
If o € Ay, @(-) = P(x0, X1, - - X»); and then the LHS in (6) may be written as

// / (X0, X1) + = P(Xn, X 1) P(x0, X1+ Xa)f (Xn11)dpio (x0) dpi(x1) -+ dp(¥41)
= /5/5"'/SP(Xofm"'P(anuxnw(mm o) (TH) ) o () dpoxt) - - - ()
~ [o-10102, v
Hence (5) follows. ]

Corollary 2.1.
Let (Q), F,P,(Z,)) be as in the theorem. Then the process (Z,) is Markov.
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Proof. We must show that

]E(f o Zn+1 |-7:n)

By the theorem, we only need to show that

E(f 0 Zy1|Z,).

E(f 0 Zy1|Zy) = (Tf) 0 Z,.

In checking this we use the transition operator 7. As a result we may now assume that ¢ has the form ¢ = goZ, for g

a measurable function on S. Hence

/ @(f 0 Zy41)dP = /(g 0 Z,)(f 0 Zys1)dP = (g, Tf)p2
Q Q

— [[ordu= [(goz(T o Z,)aP
S Q

= / @((Tf) o Z,)dP,
Q

which is the desired conclusion.

Definition 2.1.
We say that a measurable function f on S is harmonic if
Tf=".

Definition 2.2.
A sequence of random variables (F,) is said to be a mar-
tingale if and only if E(F,1|F,) = F, for all n € Ny.

Corollary 2.2.

Let (Z,)nen, be a stochastic process with stationary tran-
sitions and operator T. Let f be a measurable function on
S.

Then f is harmonic if and only if (f o Z,),en, is a martin-
gale.

Proof. This follows from (5) combined with Defini-
tion 2.2. O

Corollary 2.3.

Suppose a process (Z,)nen, is stationary with a fixed tran-
sition operator T : [%(y) — [*(u). Then yp=PoZ;" for
all n € Ny.

Proof. Let f and g be a pair of functions on S as spec-
ified above. Then we showed that

/gfd,, - /(goZ,,)(foZ,,)dIP’,
S Q

which is the desired conclusion. O

(

2.2. Martingales and boundaries

Let G = (G° G") be an infinite graph with a fixed conduc-
tance ¢, and let the corresponding operators be A, and
T..

Let h : G° — R is a harmonic function, i.e, Ach = 0, or
equivalently T.h = h.

As an application of Corollary 2.2, we may then apply a
theorem of J. Doob to the associated martingale h o Z,,
n € Ny. This means that the sequence (h o Z,) will then
have P- a. e. limit ie.,

lim hoZ, =v pointwise P a.e. (7)

The limit function v : Q — R will satisfy v(xoxixz---) =
v(x1x2x3 - - - ), or equivalently,

v=vog. (8)

The existence of the limit in (7) holds if one or the other
of the two conditions is satisfied:

(i) helL>;or

(ii) sup, Jo|hoZ,|*dP < oo.

Proposition 2.1.
[11]If h : G° — R is harmonic and if (i) or (ii) hold, then

h(x) = j v dP, forallx € G, 9)
Q

where P, = the measure P conditioned with Zy(y) = x.
The converse implication holds as well.
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Proof. Starting with h harmonic, if the Doob-limit v
in (7) exists, then it is clear that v satisfies (8). By Dom-
inated Convergence, (9) will be satisfied.

Conversely, suppose some measurable v : () — R satisfies
(8), and the integral in (9) exists then

() =D _p(x.y)h(y)

y~x
_Z]P’ZO_X Z; = y)E(v|Z(-) = y)

y~x

Zp(xyE(me—y)

by (8)

_ZP(X YEW|Z = x,Z1 = y)

y~x

=P(v(--+)
= h(x),

showing that h is harmonic.

2.3. Solenoids

Example 2.1.

Let S be a compact Hausdorff space, and 0 : S —» S
a finite-to-one endomorphism onto S. Let X;(S) be the
corresponding solenoid:

Xo(S)c [ ]S, where Ny ={0}UN={0,1,23,---},

neNy

X5(S) = {(Xi)keno|o(xis1) = xic}- (10)

One advantage of a choice of solenoid over the initial en-
domorphism 0 : S — S is that o induces an automorphism
0 : X,(S) = X,(S) as follows:

G((xoxix2---)) = (a(xo)xoxax2 - - -),
with inverse
7 ((xoxix2 -+ ) = (xixax3 -+ -).

Let W : S — [0,1] be a Borel measurable function, and
set

(Twh)(x) = Z W(y)fy), feB(S),xeS. (1)
(yi X
Assume
Y W) =1V¥xeS. (12)
oly)=x

For points x € S, set D(x) = #{y|o(y) = x}. A measure
pon S is said to be strongly invariant if

1
[ o Z fwdstod = [
y
a(y)=x
Lemma 2.1.
Assume a measure p on S is strongly invariant, and let

m be a function on S. Set Vf(x) = m(x)f(a(x)). Then the
adjoint operator

VL) = L) s (V) = D) Z y)f(y).

ﬂ(y)

Proof. See [11]. O

Set Q = X,(S) and equip it with the o-algebra F and the
topology which is generated by the cylinder sets.
Set Zk Q- 5,

Zi(xoxixz -+ ) =xx, k €N (13)
Let E C S be a Borel set, and consider
ZE) = {w € Q|Z(w) € E}. (14)
Then the o-algebra F on Q is generated by the sets
Z(E) as k and E vary. (15)
Set

Fn = o-algebra « Zi|k < n >, (16)

where « - > refers to the g-algebra as specified in (14).
In Q = X,(S), consider the following random walk: For
points x,y € S, a transition x — y is possible if and only
if o(y) = x; and in this case the transition probability is
pwix.y) = W(y).

Let p be a probability measure on S. In Q we introduce
the following Kolmogorov measure P = Py, which is de-
termined on cylinder sets as follows

P(C,) = (C(EO,E1,EZ.,.IE”)):/E/E

W (x1)W(xz) - - - W(x,)dp(xo)dp(xi) - - - du(x,).
(17)

Ep

More specifically, P is a measure on infinite paths, and

C, ={w=(www; -
Zi(w) € Ei, for 0 < k< n}. (18)

Do(wis) = w;,
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Example 2.2.

The following is a solenoid which is used in both num-
ber theory (the study of algebraic irrational numbers)
and in ergodic systems. [4]. For this family of exam-
ples, the solenoids are associated with specific polyno-
mials p € Z[x].

Let S = T° where s € N is fixed; and let p(x) = aox* +
ax* '+ +ag; ag # 0, be a polynomial, p € Z[x]. Set

0 ao 0 O 0
0 0 a 0 0
0 0 0 ao 0
F=F = .
0 0 0 0 -+ ao
—as —0ds —az; —aq

Consider the shift o on the infinite torus [], T® = (T*)%,
and set

Xa = {(Zn)nEZ S (TS)Z|GOZn+1 = FZn}A

Then it follows that X,(p) is o-invariant and closed. As a
result, X;(p) is a compact solenoid.

3. Graphs

One additional application of these ideas is to infinite
graph systems (G, c) where G is a graph and c is a positive
conductance function. A comprehensive study of this class
of examples was carried out in the paper [12]. We will
adapt the convention from that paper:

G : the set of vertices in G;
G" : the set of edges in G;
and ¢ : G' = R, the conductance function.

Assumptions

(i) Edge symmetry. If x,y € G° and (x,y) € G, then
we assume that ¢,, = ¢, . Moreover, (x,y) € G' &
(y,x) € G".

(i) Finite neighborhoods. For all x € G° the set
Nbh(x) = {y € G(x,y) € G} is finite.

(ii) No self-loops. If x € G°, then x & Nbh(x).
Convention: If x,y € G°, we write x ~ y iff (x,y) €
G

(iv) Connectedness. For all x,y € G° there exists
{x}_y C Go such that (x,x41) € G, i =
0,1,---,n—1xp=xand x, = y.

(v) Choice of origin. We select an origin o € G°.

Definition 3.1. e The Laplace operator A = A:

(D) =D cuy(flx) = f(y)).

Yy~x

e Hilbert spaces:

(i) (G%: functions f : G° — C such that
12 = ¥oeo MR < oo, Set {f,f); =
Y oo i(X)fa(x). For every x € G° set
0, : G' 5 R,

1 ity =x,
sy =1, Y
0 ify+#x.

Note that {d,} is an orthonormal basis (ONB)
in 2(GY).

(i) Heg: finite energy functions module constants:

I = 3 55 el —fP. (19

all x~y

Set

(f1, fz)E = % Z Z Cx,y(m

X~y

— h(y)(f2(x) = f2(y)).  (20)

e Dipoles. For all x € GO there is a unique v, € Hg
such that

(e, e = F(x) — f(0), Vf € H.

In this case, v, satisfies Av, = 0,—0,, and we make
the choice v,(0) = 0. The function v, : G — R is
called a dipole.

Example 3.1.
The dyadic tree.

e A = the alphabet of two letters, bits {0,1} ~ Z,.

e GO the set of all finite words in A : 0 = @ = the
empty word, x = (g1a2---a,) € G, a; € A, a
word of length n; [(x) = n.

e G' = the edges in the dyadic tree. If x =
@, Nbh(x) = {0,1} two one-letter words. If
lx) = n > 0 x = (a1az2---a,), Nbh(x) =
{(a1---a,-1), (x0), (xN)}. Set x* = (a1 - a,_1).



Palle E. T. Jorgensen, Myung-Sin Song

e Constant conductance.
This is the restriction ¢ =1 on G'. Then

(Af)(0) = 2f(0) — £(0) — F(1), and

(Af)(x) = 3f(x) — f(x*) — f(x0) — f(x1),
if x € G° and [(x) > 0.

e Paths in the tree. If x = (a1a2---a,) € G° there
is a unique path y(x) from @ to x: the path is

v(x) = {(o, a1), (a1, (a1a2)), -~ ((a1 -+ @p-1), %)}
and consists of n edges.
e Concatenation of words: For x = (a1az---a,),

y = (biby---by) € GO
(@ anby - by).

Set z = z(xy) =

The dipoles (v,) are indexed by x € G°\ (0), and v,(0) = 0
where o is the chosen origin. If G = the tree, theno = @ =
the empty word.

Lemma 3.1.
[12] Let x = (a1az---a,), a; € A, n = [(x); and y =
(biby---by), by € A, m = l(y). Then

(i)
0 ify=o,
vly)= 422" —=1) =22 ifm <n,
21 ifm > n.

(ii) vx € He, and ||v ||z = 2(22" —1).

(iii) (v, vy)e = 2(22M00I) — 1) = #(y(x) N y(y)), for
all x,y € G°\ (o).

Proof. (i) By the uniqueness in Lemma 3.1, it is
enough to prove that the function v, in (i) satisfies
(v, FYe = f(x) — (o) for all f € Hg, and therefore
also
Avy = 0, — 0y; (21)

and that (ii)-(iit) hold.

Specifically, we must prove that

(Av)(0) = -1,
(Av)(x) =1, and
(Avi)(y) =0, if y & {o,x}.

Each is a computation:

(Avi)(0) = 2vi(0) — vx(0) — v (1)
=0—-(2-2"—(2"-1))
=1
= 3,(0).

And if y # o, but m < n, then

(Avi)(y) =3v(y) — v(y™) — v(y0) — vi(y1)
=3.2"7" . (2" — 1) =2 T )
—2.2m =1 )
=0.

Finally, we compute the case y = x as follows:

(Avy)(X) =3ve(x) = vy (x™) — v (x0) — vy (x1)
=3.2"=1)=2-2""=1)=2.(2"=1)
=0-3+2+2=1
=0x(x) = 0o(x).

We leave the case m = [(y) > n to the reader.

(i) A computation using (19) yields

1
vl =5 @)

m<n

1 5, 1-2-2
=32 '(1—2*2)
2 o
=§(22—1)

proving (ii).

(ii) Suppose m = [l(y) < n = I(x), x,y € G°\ (o).
From (20), we see that the contribution to (v, v,)e
only includes words z with ((z) < m.

The desired conclusion

(v vy e = 272" (y(x) N ¥(Y))

follows as in (it). The possibilities may be illustrated in
Fig. 1 below.
O
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v(X)Nx(y)

—

Figure 1. Dyadic tree-branching rules.

4. Specific transition operators

4.1. Transition on graphs

Let G = (G% G") be a graph with conductance function
c: G" — R*, and transition probabilities

_ cxy)

plx,y) = ) Vix,y) € G

Note that c(x)p(x, y) = p(x, y)c(y), which makes the cor-
|

Proof.

responding p-random walk reversible.

Lemma 4.1.
Assume that #Nbh(x) < oo for all x € G°. Set

(THx) =) plxy)f(y),

y~x

and let (Z,) be the random walk on G° with transition
probabilities p(x, y) on edges (xy) in G, ie.,

P({y|Z,(y) = x, Zoa(¥) = y}) = p(x,y) for (xy) € G

Let T be the transition operator, and for ¢ € I'(G°), set

xeGo
then for pairs of functions f; and f, on G°, we have
E((fi 0 Z,) - (f20 Zy11)) = (T"(f1 - TH))

with f; and f, are restricted to make the last sum conver-
gent.

Let fy, f, be a pair of functions (real valued) on G° such that the pointwise product f; - (Tf,) is in {'(G°). Then

for n € Ny, we now compute the Z,-expectations: For the P-integration on path space Q, we have:

E((f; 0 Zy) - (f2 0 Zos1)) = [m 0Z,) - (fr0Zys1)dP

)
=Y > ) plo,x)p(xixa) -+ PO, Xnsr) i (Xn) Falxn 1)

X0 X Xn+1

such that x;_q~x;

=Y > D plxox)plxa,xa) - plxa-t, xin)fi 06n) (T H2) ()

X0 X Xn

x0€GO

=(T"(f; - Tfy)).

Theorem 4.1.

Y T - Th)(xo)

Let (G, c) be a graph with conductance c : G' — R,. Assume that Nbh(x) < oo for all x € G°, when Nbh(x) = {y €

GOly ~ x}. Set

plx. y) =

and (TH(KX) =) plx,y)f(y).

y~x
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Set
(MG pe) ={f: C* > Rlx > c()f(x) € (G}, and ()= ) c(x)f(x).

x€GO

Let P\) = Ple) pe the cylinder path-measure on
Q= {(xoxix2--)|x; € G°, xi_q ~ x;,i €N},
where we use . in the first variable xo, and counting measure on the remaining variables. Then
EY((fy 0 Z,) - (f2 0 Zy11)) = (F1 - Th)..

Proof.

E¥((fy 0 Z,) - (f2 0 Zy1)) = Z Z . Zc(xo)p(xo, x1)p(xa, x2) - p(Xas Xn1) 1 (Xn) F2(Xn11)

X0 X1 Xn41
such that x;_1~x;

=) D ) cbo)plroxa)plxi o) - plxat, xa)fy(xa)(TH2) (xn)

=Y clo)T"(F1 - TH)(x)
= (Tn(f1 . Tf2)>c
=(f - ThH),.

In the multiple summations 3, 3 -3 . itis just the first 3 | -summation that is possibly infinite; in case the
vertex-set G° is infinite. Note that the combined summations in the beginning of the proof contribute the integration
over the set Q) of all infinite paths y = (xox1x2 - - -) specified by xo ~ x1, x; ~ x2, X2 ~ x3, --- , at each step, moving from
x; to the next variable, note that x;;1 ranges over the finite set Nbh(x;). For more details on this point, see (22), below.
In the last step, we used the following formula which is valid on (*(u,):

(To)e = () @€ l'(ue). (22)

We prove (22):
(To)e=)_ c¥)) pyoly)=> o)) cxy)=>_ ¢ly)cy) = (o).

xeG0 yn~x yea? X~y yeal

(

4.2, Transfer operators be a continuous function such that

In Sec. 2, we showed that a stochastic process (Z,),en, 0N
a probability space (Q, F,P) induces a transfer operator
T. The derivation of T is then essentially canonical. /SP(X' ylduly) =1 pae. x. (23)
Here, the strategy will be reversed; but now, starting with
T, there is a variety of choices of associated processes

(Zn)neny- Set
4.2.1. Setting

Let S be a compact Hausdorff space. Let (S, B)s, ) be a _ .
Borel probability measure space, and let p : SxS — Ry (THx) = ]SP(X' y)duly) forall f € L=(S). (24)
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Set

0= Qp = {Y = (XOX1X2- --)|X,‘ es,
st p(xi—1, x;) > 0},  (25)

so an infinite path-space with path transitions governed
by te function p.
Let P = (P,) be the associated cylinder measure on (), as
defined in Sec. 2. For n € Ng and y = (xox1x2---) € Q,,
set

Zy(Y) =X ie, Z,:Q,—>5 (26)

|

is an S valued random variable for all n € Ny.

Theorem 4.2.

Let p: S xS — Ry be as stated in (23) above. Let T
be the transfer operator (24). Then the stochastic process
(Zn)nen, in (26) satisfies

EV((fi0Z,) (20 Zy)) = /S(T”(ﬁ - TH))(x)du(x)

for all f,,f, € [2(S).  (27)

Proof. The details in the computation for (27) follow those in Sec. 2, but the reasoning is now reversed. Indeed,

BV (fy 0. 2,) - (0 Zyu)) = js /5 /S P30, 1)+ P, X1 o (%) o 1) (0 A1) -+ (1)

- js /5 /5 P30, 31) - Pl %o o () (TE2) (50 i) i (xr) - ()

= /S(T”(f1 - TH))(x)dp(x).

Definition 4.1.

Let T be a transition operator satisfying the condi-
tions (23) and (24), and suppose there is a Perron-
Frobenius measure g on S, i.e.,

poo T = po. (28)

We say that T is ergodic if there is only one probability
measure iy on (S, Bs) which solves (28).

If T is ergodic, and g is the (unique) Perron-Frobenius
measure, then it follows from the Pointwise Ergodic The-
orem that for all f € L*(S), the limit

lim T°(f) = wo(M1, (29)

n—o0

pointwise a.e. exits on S, where 1 denotes the constant
function 1 on S.

Corollary 4.1.

Let p, T, S, Bs, p, and (Z,) satisfy the conditions of
the theorem. Further assume T is ergodic with Perron-
Frobenius measure py. Then

lim BEP((fy 0 Z,) - (f2 0 Zps1)) = polfy - TH) (30)

is satisfied for all f,,f, € L>(S).

(

Proof. To verify (30), note that EP)((f;0.2,)- (f20Z,11))
is already computed in (27) in the theorem.

Since p is a probability measure, the conclusion (30) now
follows from (29), i.e., form an application of the Ergodic
Theorem. O

4.3. Transition on solenoids

Let (S, ) be a measure space, ¢ : S — S an endomor-
phism as specified in Sec. 2. Let Q = X;(S) be the cor-
responding solenoid. Let W : S — [0, 1] be a function
satisfying

Y W) =1 (31)

y,0(y)=x

and let P =P, , w be the corresponding path measure.

Lemma 4.2.

For the solenoid set Z, : Q — S, Z,(x0,x1,%2, ") = X,
and (Tf)(x) = Zw(y)zx W(y)f(y), for x € S. Suppose
T has a Perron-Frobenius measure yg. Then (Z,),en, is
stationary with transition operator T.
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Proof.
space Q(= X,(S)) we then have:

Let f;, f, be a pair of functions on S satisfying the conditions listed above. For the P-integration on path

(o Z) (o Zu) = [ 30 T e 3 WIWi) - Wikl )dboli)

a(x1)=x00(x2)=x1

Xn+1
0(Xp41)=Xn

:/5 Z Z Z W)W (xz) - - - W(xa)F1 (o )(T12) (x)d o (xo0)

o(x1)=x00(x2)=x1

Xn
0(xn)=Xp-1

= /S(T"(ﬂ - TH))(x0)dpo(xo)

=po(T"(fr - Th)) = po(fr - TH)

= (f1, Th);2

(o)

4.4. Encodings

Let G = (G° G) be a graph where we write G° for the
vertices and G' for the edges. Let S be a set. We say
that G yields an encoding of the points in S if there are
mappings

°:G">'S, onto, and (32)
7' : G° — Functions (S — S), (33)

such that for every e = (x, y) € G' we have
(y) = 7'(e)T"(x). (34)

Examples

G = the binary tree,

S=Ny=1{0,1,2---}
Finite

={> 2| €{0,1}}. (35)

k=0

If n € Ny is given the finite word (xox1x2---) in (4.6) is
computed from the Euclidean algorithm for division with
2.

Points in GO are represented by the empty word o, and

by all finite words w = (xoxy - - - x,,). Set

p
W) =) x2'=neN,. (36)

k=0

Starting with w = (xoxq - - - x,) € G°, the three neighbors
are (w0), (w1), and w* = (xox1---X,—1) truncation, see
Fig. 3.

e1 (W1)

*
W o w

eo ~(wO0)

Figure 2. Three nearest neighbors and then associated these edges
e, e1 and e*.

Set
t'(e0) = n > n; see (36);
t'(es)=n—n+2"";  and (37)

t'(e®) = n— Y Pl x 2%

Note that in this example, there is an additional pair of
mappaings Ng — Ny

corresponding to the encoding mappings:

0y : (xox1 -+ xp) = (Oxox -+ - xp),
(39)

one step longer

o1 (Xox1 - xp) = (Ixoxq -+ - Xp).

Remark 4.1.
The same construction works mutatis mutandis with
N'adic scaling rather than the dyadic representation of
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points in Ny. Moreover, in the representation

p

n = ZXka, (40)

k=0

the choices for x, may be from any complete set of residues
modulo N, i.e., points in No/N - Ny, or Z/NZ = the cyclic
group of order N. The residues {0,1,--- ,N =1} is only
one choice of many.

Encoding of 7.

The representation used in (36) above works for Z as well,
but with the following modification:

p
P(xoxix2 - xp) = —2° + Zxkzk. (41)
k=0
Explanation:

p
PN ) =2+ x2, withx =1,0<k<p
p+1 times k=0
= 2P 4 2P 1
=2 1.

Hence, with this convention we arrive at an encoding of
Z.

Graphs vs compactification:

In the examples, we represent points in the vertex sets G°
on a graph G by finite words in a specific finite alpha-
bets. A choice of compactification Q of G° is the set of
infinite paths y, i.e, y = (xox1x2---) where x; € G°, and
(xi_1,x) € G' for all i € N.

In each of the examples we present, we build measure
P on the compactifications Q) with use of Kolmogorov's
extension principle. This is a projective limit construction
which proceeds in three steps [11]:

(i) First specify P only on finite words, ie., on cylinder
sets over G°

(i) Check that the prescription of P on cylinders is con-
sistent.

(iit) With Kolmogorov's theorem than extend P to the
Borel o-algebra of subsets in Q generated by the
cylinder-sets [11, 15].

Definition 4.2.

In later applications, the following two cases for P will
play a role: Consider the subset Qp;, in Q consisting of
paths y = (xox1x2 - - -) which terminate in infinite repeti-
tions, i.e., y € Qf, < 3 n such that x; = x, Vi > n. The
measure P is said to be tight if and only if P(Qry,) = 1.
Alternatively, P(Qf,) < 1.

Examples resumed:

Wavelets. We adopt the standard terminology for dyadic
wavelets in L?(R), specifically ¢ for a choice of scaling
function; see [11]. Let (ax)rez represent a wavelet filter,
i.e., satisfying the following three conditions:

1
Zﬁkaku[ = 550,1, (42)
keZ
Zuk =1, and (43)
keZ
Q) =2 arp(2x — k). (44)
keZ

The function ¢ is in L?(R) and

/ e(x)dx =1 (45)
R

is a chosen normalization.

Let ¢ be the R— Fourier transform.

The following result is from [11]. Let Q = the set of all
infinite words, and view Q) as a compactification of the
vertex set G° of all finite dyadic words.

Lemma 4.3.
For every t € R, there is a measure Py on Q such that

Pilxoxt - xp) = |t + 0ox - x))|°, (46)

where 0 : G° — Z is the encoding of (41).

Lemma 4.4.
(See [11])

(a) Consider the process (Z,) in (Q,P¢) from (46) with

Z, (xoxixz ) = x, € {0,1}.
~—_—————

infinite word

Then there is a transfer operator T such that the
process is T-stationary.
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(b) Let
2

Wie') = W(t) = , (47)

§ akeikt

kel

where functions W_on T are identified with 27m-
periodic functions W on R, and where (ay) is some
wavelet filter as in (42)-(44). The transfer operator T
is then given by

(Tufl) = WISI)+ WS + (S + ).

We say that W has scaling-degree 2.

Following (38), let a transition from n to n + 1 be
given by a choice of x € {0,1}.
Then

]Et(ZnZIH—1) = W(t + X]T). (48)

Proposition 4.1.

Let ¢ € [%(R) satisfying (44), and suppose ||l < 1. Let
Q be the compactification derived from the encoding t° of
Z in (41) and let t € (—m, t]. Let P, be the measure on
Q from (46).

Part |

Then the following affirmations are equivalent:

(a) The translates {¢(- — k)|k € Z} form an orthonormal
family in [(R).

(b) The measures P, are tight measures on Q for all t.
(© Y, |p(t+nm=1"forallteR

Part Il

If the measures P, are not tight, then the translates {¢(-—
k)}xez still form a Parseval frame for the closed subspace
V() they span, i.e., we have the identity

)

keZ

2
:/|f(x)|2dx for all f € V(g).
R

/E(x — k)f(x)dx
R

Proof. See [11]. O

Definition 4.3.

Functions W on (—, 1] arising as in (47) for a system of
wavelet coefficients (a¢)rez (44), are called wavelet filters.
A wavlet filter W is said to be low-pass if yg = 0y, i.e., the
Dirac measure at 8 = 0, is a Perron-Frobenius measure
for Tw.

In general, if W is a Lipschitz function, it is known that
Tw has a Perron-Frobenius measure [3].

Example 4.1.
[5] Set

We(z) = %|1 + 72| forz=e®. (49)

Then Wr is a wavelet-filter under scaling by 3, but it is
not a low-pass filter.
Indeed, the following scaling law holds for W:

Y Wew)=1, Vz=e“eT.
3=

We say that Wr has scaling degree 3.

It is proved in [5] that Wr induces a wavelet represen-
tation on an [2-space built from the middle-third-Canter
construction, “Cantor-dust” CDs5 in R with Hausdorff mea-

sure H?, a = % ie., on LZ(Cantor dust, HY).

Cantor dust C D5
The points x € CD5; C R are encoded by

= = a;
X=G_k3k+0_k+13k1+"‘+00+Z?,
i=0

where k varies in Ny, and where a; € {0,1,2} for j € Z
such that —k < j; but where a; attains the value 1 only
for at most a finite number of places.

The Perron-Frobenius measure pi for Ty, is singular with

support (up) = T.

5. Reprocity rule for the spectrum

In the previous section we saw that a wide class of pro-
cesses are governed by a transfer operator T. If the pro-
cess in question takes places on a graph G = (G°, G') with
conductance ¢, then harmonic analysis on G is phrased in
terms of a Laplace operator A, as follows:

(AA)(x) = Z c(x, y)(f(x) — f(y)), for x € G°.

y~x

Lemma 5.1.
Let (G, c) and A, be as above. Set p(x,y) = Cgf)’) for
(x,y) € G" and let

(TNX) =D plx, y)f(y),

y~x

then
(Ach)(x) = c(x){f(x) = (TF)(x)}-

And conversely,

(Th)lx) = F(x) — %(Acf)m.
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Proof. Left to the reader. O

Because of reference to harmonic analysis, we present
the results in this section in terms of A,, but the lemma
makes a translation between A, and T, immediate: For
example, a function f on G° satisfies A.f = 0 if and only
if T.f = f. Solution f to either one of these equations are
called harmonic.

Definition 5.1.

Let H be a Hilbert space, and D a dense linear subspace.
An operator A defined on D is said to be formally selfad-
joint if and only if

(Au,v) = (u,Av)
holds for all u,v € D.

A further advantage of A, over T. is that A, is formally
selftadjoint, (while T, is not!).

When we say that A, is formally selfadjoint, this applies
to either one of the two Hilbert spaces (>(G°), and Hg =
the energy Hilbert space.

In the case of Hg, we take for D the linear span of the
family {v,|x € G’} C Hg; see Lemma 5.2 and 5.3.

We continue the setup from the previous section: G =
(G°, G a fixed graph with vertices G° and edges G'. Let
¢: G" = R, be a fixed conductance function. Let A = A,
be the Laplace operator. Fix an origin o in G° and let
{W}ieco\o) be the system of dipoles.

Lemma 5.2.
[12] (Reproducing Kernel) The system {v,},cco\(,) forms a
reproducing kernel in the sense:

(vx, e = f(x) = f(o) forall f € He, (50)
where Hg is the energy Hilbert space.

Proof. The existence of {v,} is established with an ap-
plication of Riesz's lemma: If x € G°, there is a path
Y(X) =X = x1 = -+ = x,, & = (x; xip1) € G, (gener-
ally not unique) such that xo = 0 and x, = x.

By Cauchy-Schwarz, we get

c(er)

1) = o) < Y~ — Il 1)

Riesz's lemma applied to Hg, then yields Jv, € Hg such
that (50) is satisfied.

We claim that v, satisfies the dipole equation
Av, =06, —3,, x € G\ (o). (52)

This implies (52), and if Ah =0, then w, = v, + h solves
(52) as well; and vice versa. O

Lemma 5.3.
[12] Let Ty = spanc{0.}eco, and De = spanc{vi}ieco\(o)-

By “span” we mean finite complex linear combinations, so
we consider all finite summations

%:{Zaxéx}, and Dgz{Zvax}, (53)

where {a,} and {b,} denote finite systems of scalars, a,,
b, eC.

Then A yields a density defined hermitian (i.e., formally
selfadjoint) operator in each of the Hilbert spaces [?(G°)
and HE.

Specifically, Ty is dense in [?(G°) and

(u,Av)p = (Au,v)p, Vu,veD. (54)
Moreover, V is dense in Hg, and
(u, AvYg = (Au,v)g, Yu,v € Dk. (55)

Proof. The symmetry property (54) is immediate from
the definition of A.

We now prove (55): Since both sides in (54) are sesquilin-
ear, it is enough, by (53), to prove

(vi, Avy)e = (Avy, vy )e, x4y € GO\ (o). (56)

We have
(VX,AVy>E bg:(SZ) <VX, 6y — 60>E
1, (0 = B = (6, — Gu)(o)
= 0y(y) +1
by sg?metrg <5X B 60’ Vy)E
= (A
by (52) (A vy e,
which is the desired Eq. (56). O
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5.1. Two Hilbert spaces

Let G = (G° G) be as above; and let ¢ : G' — R, be
a fixed conductance function. Let A and T be the corre-
sponding operators, A = A, the Laplace operator, and

(TH(KX) = f(x) — %(Af)(x), xe@. (57

Pick a fixed 0 € G°, and let (Vi)xego\(o) be the correspond-
ing reproducing kernet.

It is important to understand the two operators in the two
Hilbert spaces (>(G°%) and Hg. By (57), it is enough to
consider just A.

As an operator in [2(G°), the operator A has as its domain

Ty = all finite linear combinations of {0, },cco

span {0, }eco;

while the domain in Hg is

Tk = span {y|x € G°\ (0)}.

Theorem 5.1. (a) The domains in > and in Hg:

(i) Dy is a dense subspace in >(G°); and
(ii) Dr is a dense subspace in He.

(iii) If4Nbh(x) < oo for all x € G°, then A maps T
into itself; and Ag maps Dk into itself.

(b) For all vectors ¢,y € Ty, we have:
(i)
(.0} =) _ eI’ =) Y clx. y)@x)e(y)
Xy

xeGo
X~y

(ii) (@, Ap)p >0; and
(ii) (@A) = (Dp, ¢h)p.

(c) For all vectors @, € Dk, we have:
(@)
(0. 000 = Y 1AW +] Y (Ap)()| ;

xeGO\(0) xeGO\(0)

(i) (@, A@)y, >0, and
(iii) (@, A = (D, P

Proof. The proof of (b)(ii) is a sequence of steps with
repeated application of Cauchy-Schwarz's inequality. The
proof of (a)(i) is an application of the last equation in the
proof of Lemma 5.3. O

Remark 5.1.

The operator Ap in [?, or Ag in Hg, may be bounded or
unbounded. In all cases Ap is essentially selfadjoint in
2 [12]; but Ag may have defect-subspaces.

5.2. Dichotomy

Remark 5.2.

[12] For the graph system (G, c¢) = (tree, 1) the Laplace
operator (A, Ty) is bounded and selfadjoint in 2(G°). For
the energy Hilbert space Hg(tree), (A, Dr) is an un-
bounded Hermitian operator. In fact, A is not essentially
selfadjoint on A; ie, (A, Dk) has a infinite family of dis-
tinct selfadjoint extensions in the Hilbert space Hp.

Lemma 5.4.

Let H(-,-) be a complex Hilbert space, and let D be a
dense linear subspace in H.

Let L be a closed Hermitian operator defined on D, i.e, L
is linear and satisfies

(u,Lv) =(Lu,v) Vu,veD. (58)
Then the spectrum of A is the closure of the set

(u, Lu)
llul?

NS(L) = { ue ’D\(o)}. (59)

Proof. The Hermitian property (58) implies that the
spectrum of L is contained in R.
Now suppose Ay € R, and that

dist(Ag, NS(L)) = ¢, > 0. (60)
We will show that A must then be in

R\ spec(L) = the complement of the spectrum

= the resolvent set.
Let u € D\ (0). Then

Aot — Lu||? = Ag|lul® — 240{u, Lu) + ||Lull*.

355




Spectral theory of discrete processes

356

Setting x; = 4 e NS(L), we get

lluf?

lAou = Lul* = flu]* - (Ao = x1)* = lull’x + || Lu]|*

(u, Lu)?
> ul®- & + ||Lul]® - >
by (60) [lull

> [lu]l® - €,

(61)

where we used Schwarz' inequality in the last step; viz,
(u, Lu)® < luf]® - [|1Lu

or

”2 _ (U, Lu>2
full> —

|Lu

By virtue of the inequality (2.77), we may define an oper-
ator

Ro = R(A) : range(Aol — L) — H

by
Ro(Au — Lu) = u. (62)

Extend Ry by setting it = 0 on the ortho-complement
(range(Aol — L))* = N(Ag — L*). (63)

Here L* denotes the adjoint operator.

From (62), we calculate that Ry : H — H defines a
bounded inverse to Ag/ — L, and so Ay € resolvent(L); and
conversely. O

Let {vi}«eco\) be the system of dipoles, and set
M = (v, vy )E) (64)

viewed as a Hermitian matrix, x = row index, y = column
index.
If &= (&) € F C P(GY), set

M)y =) M,&,, (65)
y
matrix multiplication, where

My = (v, vy )E-

Then M is a density defined Hermitian operator in (2(G).

Theorem 5.2,
Let (G, p) be given and let A be the corresponding density
defined Hermitian operator in Hg. Then

specy,, (A) C [0, oo) (66)

and
specy, (D) = (specp M), (67)

where we use the charactors % =00, and ; =0.
Moreover,

(specz (M)~ = {1/A]A € specp(M)}. (68)
Proof. For (&) € F, set

u= Yy &w (69)

x€GO\(0)

Then u €V, and
<U,AU>7—(E = ZZEXQKVX, AVy)E (70)
x oy

=Y Y &&0Ay+1) (71)
x oy

2
> 0. (72)

=) &P+ &

Since vectors in Hg are equivalence classes modulo the
constant function on G° we may add the restriction
Y & =0in (69), and the operator A will be unchanged.
The modified equation (2.22) then needs

(u, Au)e = | &]3. (73)
Claim 5.1.
lull, = (& M&)e. (74)

Proof. (of Claim 2.6). We compute:

lullE = (u, u)e

= Z Z@%(Vm vy)
Xy

by 69 Z §MQ),

— (& M)z,

as claimed. O
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The desired conclusion (67) now follows: If u € V'\ (o) is
given by (69), then

(A €2
W (& ME) 73)

By taking closure, we obtain the sets on the two sides
in (67) O

Corollary 5.1.
If &= (&) € F(G°\ (0)), then the representation

u=Yy &u (76)

is unique; in particular, the system (vy),eco\(o) is linearly
independent.

Proof.
summation with & € C.
Let y € G°\ (o). Then

Let u € V have a representation (76) as a finite

<5y' u)E = Z <?x(éyr Vx)E
b 2 S840 = 8,(0)
= Ey'

In particular, if v =0, then & =0, Yy € G\ (o). O

Corollary 5.2.
If F c G°\ (o) is a finite subset, then O is not in the
spectrum of the matrix

MF = (<er Vy)E)x,yeF~ (77)

Suppose o € spec(Mr) where F is a fixed as in the state-
ment of the Corollary 5.2. Then

& e IZ(F\(o))
such that

(ME)X = Z<VX' Vy)EEy =0. (78)

yeF

Setting u =), &,v, we note that

u € ({viher)t (79)

Figure 3. Encoding of vertices.

Claim 5.2.

u € ({wheao) " (80)

We need to prove this only if x € G°\ F.
Combining (74) and (78), we get

lullz = (& M)
=(&,0)p
= 0'

so u = a constant function on G°, and (80) is satisfied.

6. The energy-inner product

(G, c) = (treeT,1), 0 = @, ¢ = 1. Explicitly form for v,,
x € G°\ (0). Set

x = (a10,a3---a,) € G°\ (o) a,€A=0,1. (81)

y(x) = {(0a1), (a102), (0203),
< (@n—20n-1), (@nra,)}, (82)

where y(x) is a path. Note y(x) C G = edges in T.

Example 6.1.
x =101 vertex, {(¢, 1), (1,10), (10,101)} = y(x) #y(x) = 3.
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Theorem 6.1. 1

Let (T, 1) be as usual, o = @, and let Hg = the 0 energy 1
span
1
I7llE =52 (1) —f(y)), (83) 1\
Xy
X~y
| ; 0 . / 1 0

but with edges (x,xb) = e, x € G°, b € A = {0,1}, q()

c(e) = 1. Then the function

wly) = Hvx) 0 ¥y)) (84) 0 <
00

solves

(v, F)e = f(x) — f(0), VFf €& Mg, (85)
Av, =0, —0, xe€G° \ (0) (86) Figure 4. Case 1.

and
n>1 x = (a1a2---a,). A computation yields
(o v)e = HY N yly) Yxy € GO\ (o). (87)
A0) =0—1(0) = (1) =0—-1=-1,
Proof.  Proof of (86). By (84) x = (a1a,---a,) € G*\
(0). Let x be as in (82). Set y(x) = RHS in (82) C G'.

Neighbors of A(x)=3n—(n—1)—2n =1

= (0x = 00)(x),
X —>daq---dp Ax(y)zo yeGO\{o’X}.
— x0
Several cases e.g. y < x, etc.
— x1.
Ay) = 3vly) = wlbr - - bir1) = vi(y0) — wi(yT)
If x=a, n =1, Nbh(x) = {0, a0, a1}. —3k—(k=1)—(k+1)—k =0, etc.
Cases
Computation of
n=1 See Fig. 5
lville = E(w)
(Avi)(0) = 2vy(0) — v (0) — 1 (1) 1
= 5D Y Cailnls) —wl(n)
N 0 -1 2 s t
= 8,(0) — ,(0), o
= (vy, Avy)p by:(86) (e, 0x — 0o )2
=w(x) —w(o)=n-0
(Avy)(x) = 3vi(x) — ve(0) — vi(X0) — vy (x1) = #(y(x)),
= 3-0-1-1=1
use (84)
= (6, — 8)(x)-
Now, let y € G°\ {o,x}. y = (b1by---by), b; € (Vs Vi )E = (v, Avy)p

all finite functions, see (84)

= ,0, — 0,
by (36) (v Oy o)

Avy = 3—-1—-1-1=0. — _ —
v) by (84) b ) V(y) — w(o) =0

A={0,1}. Suppose x C y

More cases are = 0. by (84)
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T

Y
X
Figure 5. Case 2.
o x—_
y
# (v ()N (y))=2
Figure 6. Intersection of two paths.
O

Set M = ((vi,vy)e) = (H(v(x) N v(y). x,y € G°\ (o).
Given

specz (M) = (specy,(A)

-1
)SPG‘CHE(A)%Q )

From our theorem above A (unbounded spectrum),
closureA =V, V C He.

Corollary 6.1.
Ve 3F C G%\(o) finite, I € specp(Mg) such that A < e.

Note

MF — (<er Vy)E)X,yEF

= (Br(¥) N v(Y))eyer

and 0 € specp(Mr).

Problem: Find a systematic way of selecting F. See
Fig. 7.

It is much easier to find M with specaMr — oo.

Example 6.2.

101 11
020 or (1 ) (88)
102 n

n+1x/(n+1)2—4(n—1)

AE = 5 , and

Column Index
1 000110 11 QOO001 010 011100 101 110 111

1

OQ0CO00—=—=—==00-=-=0|-0
O0O0O0==mMmMn0O 0 =[N0 =~
- =M O000=NMO0O -0
MmN == 0000 =00—=0
OO0 00 —=—=mw0O0 =m0 =0
- 2N O0000 =00 -0
= =2|lwNnO0O000 =00 =0
Nfw = =0 000M»M=00-=0
w2 0000 =00 -0

O COO0OMMN==00Nn =0 =
Q000 = =lew~m™MOO—=NO

O COO0OMw—==00N=0 -
OQCOQ0lwn—==00N=0 -

Figure 7. Google matrix.

n+1—+/(n+1)2—4n—1)

)\I'I= 2
B 2(n—1)
Cn+1—VnZ—2n+2
— 1.

Actually both expand part of spec,M as intervals.

7. Karhunen-Loéve
Definition 7.1.
F C G°\ (o) F finite, G° infinite, (G, c) fixed. Fix o €

G° ~ A = A, He energy Hilbert space (v,, f)g = f(x) —
(o), Vf € M.

Definition 7.2.
He(F) =5pan, c{w}

General (G, ¢) — Fix point 0 € G® — A, Hg, G° infinite.
Fix vy, for x € G°\ (0), determined from Riesz applied to
He.

(v, FYe = f(x) = f(0), x & G°\ (o), (89)

and consider the infinite matrix
M= (v, vy)E), X,y € G°\ (0) (90)

and its finite F x F submatrices
Mr = ((vx,vy)e), X,y €F, (91)

so the matrices are oo x 00, or |F| x |F]|.
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Important formula

Observe

(v vy e = vy (x) = vy (0) (92)
= vy(x) = w(y); (93)

in other words kg(x, y) = v,(y) is a reproducing kernel.
Since x,y € G°\ (0); and v, : G® — R (i.e, real valued)
convention: v,(0) = 0. Diagonalization motivated by the
classical Karhunen-Loéve theorem, see [14] and [17].

7.1. Finite-dimensional approximation

Apply the Spectral Theorem to M and Mg. The Hilbert
space is [2(G%) or (F) ~ CFl with (&, n); =3, &y as
inner product.

For (Mg, ?(F)) the spectrum is always discrete, and for
some cases i.e., (M, [2(G%)) it may not be discrete.

In the discrete case, there exists M = MFf ONB
&, &, ... € 3G or [>(F) eigenvectors

0 ifj=k,

1 ifj+k, &4

(&, &) =) &&x) = ok = ‘[

& = & € I’(F) such that

MEEG=NE, M >h > >0,
&el(F), |&lla=1 (inthe F-case). (95)

In the infinite case spec(M) for (2(G°) may accumulate
both at 0 and at oo.

Since /\/Ify = (vy, vy)en € R, we may take all & : G® - R
real valued. Fix F C G°\ (0): & € [>(F). Set

Wl ()= %Zsﬂx)vm

xeF

Wi (2) = Alkz & xwlz), vzed. (96)

xeF

Lemma 7.1.
If F is fixed then & € [>(F) is an ONB. Set

Me&{ = A& (97)

then
wf G- R, wf eHe

is an extension of & : F — R from F to G°.

Proof. By (96) if z € F:

wi@) = 5 Y w0

xeF

1
= T sz r
by(4.4) Ag XEZF xS x)

1
= —(Mg&Eh),
by (97) )\k( P

A
=i$m

=& (2).

Lemma 7.2.
Fix F C G°\ (0) finite, and let

wi() = %Z#(X)VX('), ke (.2, |F]). (98)

xeF
as in Lemma 7.1. Then {wf }« is an orthonormal system

in He (thus in each of the Hilbert spaces) i.e., with the
inner product

(e =2 33 ol — a0 — i) (99

all xy x~y
We have
1 Loifj=k
whwhe=—0,,=4* ' 100
(wj  wi )e WOE10 itk (100)

Proof. We have:

1
(W), wi )e b 58) A Ay Y Y K ) v vy e

xyeF

R F o
by (91) AjAk Z{f () ZMXyEk (y)

xeF yeF

1
= &M,

F_ F.
Set uf = ﬁwj : then

(uf v up)e =0k, jke{1,2,--- |FI}.
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7.2. Normalization

The following different normalization qu = /\jw satis-
fies
luf e =1, (101)
so
Z &x)wl- (102)
I xeF
Note that the
uflr =/A&() on F. (103)
7.3. Projection valued measures
Set
PF(A) = uf >< ul); (104)

Dirac notation for rank-one projection, so a projection in
He on the one-dimensional subspace Cu/-F. Then PF() is
an orthonormal projection system, and it has a limit as
F — oo which is a global spectral measure.

We claim that

sa(uf) = (qu,Auf) € specy(Av).

! (105)

Lemma 7.3.
(Spectral Reprocity)

sA(u/-F) = (

(B
= 7 T ol

xeF yeF

Y &

xeF

> . (106)
A (Z &(y)w) >
yeFr F

N (vi, Avy ) e

Proof.

v

sA(uj

fZZE, )&i(y)(0:(y) + 1)

xeF yeF
2)

— 1 12
- -\/)T/ <||E/||2+
2)

by 101) \/7 <

> &)

xeF

)4l

xeF

O

[
Example 7.1.

10

F_ —

M" = (0 3), sp={1,3},
same spectrum, but different MF.

= (o) wa= (). @-tw=1

Set Re(A) = L(1 + (D)) Then (u,, Auy) =

Lemma 7.3.
In the examples:

e (2 Re(1) =1,
2] R =10+2 =1,

smaller for M* off-diagonal.

i (1 o)’ {RF(1)_1(1+12)_3,
3 3

Re(A); see

03

— 090,
m+1++/(m+1)2—4m—1)
Ai: .
2
In both cases, we have:
1 A
Re(A) = ~
AR ey
Ay A
Re(A) = ~4 .
e s S Iy 1 as m =09

We now illustrate by an example that points in the spec-
trum can go into oo:

_ {u,Au)
)=

If A € specp(MF) set u, = % Y ver X)) ME = A,
[&ll2 = 1 = Julle =1 50 sa(u) = (u,Au) = 1(1 +
[Piell2), e = er = xr(-), Pie = (&, €)28).
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0 1 10 11 100 101 110 111
oj110 0 0 0 O 0 O
t1o0p1f(1 1 1 1 1 1
wjo 11211 2 2 1 1
"mjo 1 1{211 1 2 2
1o0{0 1 2 1[3]12 1 1
10110 12 1 2131 1
"mofo 1 1 2 1 1 [3]2
"o 1 1t 2 1 1 2|3

Figure 8. Table of distances.

Theorem 7.1.
The truncated operators Py r)Ap. Py sy has spectral
growth ~ O(#F); so Ag is unbounded in He.

Proof. The idea is to perform a diagonalization of an
infinite matrix (My,) x,y € G°\ (0); a method inspired
by Karhunen-Loéve [14, 17]. Here F C G°\ (o) is fixed
and finite. The following computations refer to F: (&)
is an ONB in [%(F) satisfying (107) below; set w; =
AikaeF{k(X)Vx: and v = VAw, = ﬁzxe,_— Sk(x) vy
Then

MFEk = )\kEk: and (5,-, Ek>12(/:) = 0Ojk- (107)

We may now compute the matrices:

(uj, Aug)e =

\/WZ Y EX)EX) (v, Avy e

FxF

——=> D §GM&@Ely) + 1)
W/A Ak

FxF

Set Y, r &(x) = (&, e)2 = (&) where e = ef = xr.
Then the matrix entries are: Off-Diagonal:

(Uj,AUk>E (51‘,[( + (Ej><5k>),

1
VA

and Diagonal:
1 2
{uj, Bujle = (1 +(&)7).
j

We further used the following identity:

)2 )

FxF

()& ()Ekly) = (<. Skdea(F)

=0;x by (107).

This may be summarized in the following matrix form:

1 2 (&1 (&) {G1(d3)
M (1 + <E1> ) m m
(&1 )$) 1(1 + (& )2) {()&3)
VA A2 2 oA
(61)(&3) ()(83) ;73(1 + <53>2) .

N NS

If for some 0 € R*, Aj > 9, i.e,, bounded from below, then
the operator

L0000
0L o00 0
00 Lo0:0

g 0

is bounded. So

1
(m@?@k)) (108)

must be unbounded, i.e., | - |2z — oo. But (108) is
a rank-one operator;

lo><pl, p=p" FcG"\ (o) is fixed,
where p = (e;) € (1,2, #F),
G
ie,p=p" and p/ T = A
Now,

F12
”,0 “[2(1,.,,,%) = Z

So in conclusion

#F
Faoo Z )\

Pick 0 € R, and assume A/-F > 0. Then we need
§F
lim (‘:fI-F)2 = o0.

F—oo
j=1

We have &(j) = & M7 & = A7&f, &l = 1. (&f) =
Y er &F(x), and Y, (&) = #F; so indeed

. F\2 _ |: _
lim a ()" = lim#F = oco.

Conclusion: specy, (n(Ap.) ~ (#F) — oo.



Palle E. T. Jorgensen, Myung-Sin Song

Acknowledgements

The authors are please to acknowledge helpful discus-
sions, both recent and not so recent, with John Benedetto,
B. Brenken, llwoo Cho, D. Dutkay, Keri Kornelson, Kathy
Merrill, P. Muhly, Judy Packer, Erin Pearse, Steen Ped-
ersen, Gabriel Picioroaga, Karen Shuman.

References

[1] Z. Bai, J. Hou, J. Operat. Theor. 54, 291 (2005)

[2] V. Baladi, Advanced Series in Nonlinear Dynamics,
Vol. 16 (World Scientific, Singapore, 2000)

[3] 0. Bratelli, P. Jorgensen, Wavelets Through a Look-
ing Glass: The World of the Spectrum (Birkhauser,
Boston, 2002)

[4] B. Brenken, P. Jorgensen, J. Operat. Theor. 25, 299
(1991)

[5] D. Dutkay, P. Jorgensen, Rev. Mat. Iberoam. 22. 131
(2006)

[6] H. Helson, The Spectral Theorem, vVol. 1227, Lecture
Notes in Mathematics (Springer-Verlag, Berlin, 1986)

[7] T. Hida, Pitman Res. 310, 111 (1994)

[8] T. Hida, Brownian Motion, Vol. 11, Appl. Math.
(Springer-Verlag, New York, 1980)

[9] T. Hida, NATO Adv. Sci. I. C-Mat. 449, 119 (1994)

[10] D. Jakobson, I. Polterovich, Electron. Res. Announc.
11, 71 (2005)

[11] P. Jorgensen, Graduate Texts in Mathematics, Vol. 234
(Springer, New York, 2006)

[12] P. Jorgensen, E. Pearse, arXiv:0806.3881

[13] P. Jorgensen, M.-S. Song, arXiv:0901.0195

[14] P. Jorgensen, M.-S. Song, J. Math. Phys. 48, 103503
(2007)

[15] A. Kolmogoroff, Grundbegriffe der Wahrschein-
lichkeitsrechnung (Springer-Verlag, Berlin, 1977)

[16] D. Labate, G. Weiss, E. Wilson, Contemp. Math. 345,
215 (2004)

[17] M. Loéve, Probability Theory. Foundations. Random
sequences (D. Van Nostrand Company, Inc., Toronto-
New York-London, 1955)

[18] E. Nelson, J. Funct. Anal. 12, 211 (1973)

[19] M. Paluszynski, H. Siki¢, G. Weiss, S. Xiao, Adv. Com-
put. Math. 18, 297 (2003)

[20] I. Sadovnichaya, Differentsial'nye Uravneniya 42, 188
(2006)

[21] M. Takeda, K. Tsuchida, T. Am. Math. Soc. 359, 4031
(2007)

363




	Introduction
	Stochastic processes
	Graphs
	Specific transition operators
	Reprocity rule for the spectrum
	The energy-inner product
	Karhunen-Loève
	Acknowledgements
	References



